ARBEITEN

AUS DEM
INSTITUT FÜR
EXPERIMENTELLE THERAPIE
UND DEM GEORG SPEYER-HAUSE ZU FRANKFURT A. M.

BEGRÜNDET VON PAUL EHRLICH

HERAUSGEGEBEN VON
DR. W. KOLLE,
DIREKTOR DES INST. FÜR EXP. THERAPIE UND DES GEORG SPEYER-HAUSES, o. HONORARPROFESSOR AN DER UNIVERSITÄT FRANKFURT A. M.

Heft 8.
W. Kolle und H. Schlo Bberger, Experimentelle Studien mit Diphtheriebakterien und Diphtherieantitoxin an Mäusen. (Mit Tafel I und II.)
W. Kolle, K. Joseph und H. Schloßberger, Untersuchungen über die Avidität der Diphtherieantitoxine und über die Polyvalenz der Diphtheriesera
A. Binz, H. Bauer und A. Hallstein, Zur Kenntnis des Silbersalvarsannatriums. (2. Mitteilung.)
Hugo Bauer, Kolloidchemische Studien in der Salvarsanreihe. Zur Kenntnis des Silbersalvarsannatriums. (3. Mitteilung.) (Mit 1 Abbildung im Text.) N. Bezssonof, Versuche über färberische Differenzierung von Bakterien.

JENA
VERLAG VON GUSTAV FISCHER 1919

Arbeiten aus dem Institut für experimentelle Therapie und dem Georg Speyer-Hause zu Frankfurt a. M.
Begründet von Paul Ehrlich.

Dr. W. Kolle

Dr. W. Kolle
Direktor des Instituts für experimentelle Therapie und des Georg Speyer-Hauses,
o. Honorarprofessor an der Universitat Frankfurt a. M.
0. Honorarprofessor an der Universität Frankfurt a. M.

1. Heft: Aus der Abteilung fiir Krebsforschung. Mit 6 Tafeln. 1906. Preis: 9 Mark Inhalt: I. Die eppithelialen Gesehwilste der Maus. Von Dr. Hugo H.
A polant. Mit. 4 Tafeln. Apolant. Mit 4 Tafeln. II. Ueber ein trausplantables Chondrom der Maus,
Von Prof. Dr. P. Ehrlich. Mit 1 Tafel. - III. Experimentelle Karzinomstudien an Mäusen. Von Prof. Dr. P. Ehrlich. Mit 1 Tafel. 2. Heft: Aus der priifungstechischen Abteilung. Mit 8 F Inhalt, Die stantliche Priftum der Hilsern 8 Figuren, 1906. Preis: 3 Mark. Inhalt: Die staatliche Priifung der Heilsera. Von Stabsarzt Dr. R. Otto,
Mitglied des Kgl. Instituts für exp. Therapie zu Frankfurt a. M. Mit 8 Figuren. 3. Heft: Aus der experimentell-biologischen Abteilung: Dr. H. Sachs. Mit

Inhait. Tafel und 4 Abbildungen in Text. 1907. Preis: 3 Mark Inhalt: I. Veber das Zusammenwirken mehrerer Ambozeptoren bei der
Hämolyse und ihre Beziehungen zu den Komplementen. Von Dr. H. Sachs und Dr. J. Bauer. Mit 1 lithogr. Tafel. II. Beiträge zur Kenntnis der hảmoversität München. Mit 4 Abbildungen. III. Beitrag zur biologischen EiweiBdifferenzierung. Von W. Rickmann, Kaiserl. Veterinärarzt in Deutsch-Südwestafrika. - IV. Ueber die Spezifitait der biologischen EiveiBdifferenzierung. Von
Dr. J. Baner, Assistenzarzt an der akademischen Kinderlklinik V . Ueber die Differenzierung des Eiveißes in Gemischen verschiedener Eiveißarteu. Von Dr. H. Sachs und Dr. J. Bauer. 4. Heft: Bakteriologisch-hygienische Abteilung: Prof. Dr, Max NeiBer. Mit

14 Abbildungen. 1908 . \quad Preis: 2 Mark 50 Pf.
Inhalt: Ueber Opsonine und Leukostimulantien. Von Prof. Dr. M. Nei Ber und Prof. Dr. Guerrini (ans Mailand). Fuitterung von Maiusen mittelst Magensonde. Von Dr. L. H. Marks (ans New Orleans), früheren Assistenten der Ab-
teilung. Mit 4 Abbildungen.- Fitterungsstudien vou Mänsen mit einem Bacillus der Paratyphosgruppe. Von demselben. Zur Techmik der Widalsehen Reaktion. Von demselben. Mit 2 Abbildungen. Ein Abstich- und Zaihlapparat fiir Balkterienkolonien. Von Prof. Dr. M. Neißer. Mit 4 Abbildungen. - Ueber einen aufangs atypischen Typhusstamm. Von T. Ernst, früheren Assistenten der Ab-
teilung. - Kasuistische Beiträge zum Vorkommen von Bazillen der Paratyphus-(Hog-Cholera-)Gruppe. Von Dr. Eckersdorff, früheren Assistenten der Abteilung. Weiteres zur Schardingerschen Reduktionsprobe. Von Dr. Sieg fried Oppenheimer, Frankfurt a. M. - Ueber Zwei Hausapparate aur Ozonierung von
Wasser. Von Prof. Dr. M. Neißer. Mit 4 Abbildungen. 5. Heft: Ans der prüfungstechnischen Abteilung. 1913.

Heft: Ans der pruifungstechmischen Abteing. 1913. Preis 2 Mark. Inhalt: I. Veber die Haltbarkeit des Diphtherie- und Tetanusserums, Von Dr. K. E. Boe ncke. - II. Die Werthemessung des Meningokokkenserums vom
prifungstechnischen Standpukt. Von Dr. K. E. Boehncke. III. Ueber den Parallelismus der Pneumokokkenantikörper in vitro und in vivo und ihre Haltbarkeit m Pneumokokkenserum. Von Dr. K. E. Boehncke und Dr. J. Mouriz-Riesgo.
Heft 6: W. Kolle, Einleitung.-H. Sachs und H. Schloßberger, Unte suchungen über die thermostabilen Rezeptoren der x-Stämme mit Beiträgen zur
Kenntnis der Weil-Felixschen Reaktion. (Serodiagnostik des Fleckfiebers, III.) Kenntnis der Weil-Felixschen Reaktion. (Serodiagnostik des Feckfiebers, III.) nierte Extrakte. - H. Schloßberger, Die Hämotoxine der Gasbrandbakterien. Heft 7: H. Schloßber 1. 1919. Preis : 2 Mark. Heft 7: H. Schlo Bberger, Die Hämotoxine der Gasbrandbakterien. (2. Mit-teilung.)- - H. Ritz u. H. Sch 10 Bberger, Ueber die Wirkung chemischer Mittel
auf Gasbrandbakterien in vitro und in vivo. - H. Bech hold, Eine Ultrafiltrationsauf Gasbrandbakterien in vitro und in vivo. - H. Bech hold, Eine Ultrafiltrationsbei Erregern des Gasödems. - A. Binz, Zur Kenntnis des Silbersalvarsannatriums. (1. Mitteilung.) 1919.

Preis: 3 Mark.

ARBEITEN

AUS DEM

INSTITUT FÜR

 EXPERIMENTELLE THERAPIE UND DEM GEORG SPEVER-HAUSE ZU FRANKFURT A. M. BEGRÜNDET VON PAUL EHRLICHherausgegeben von
DR. W. KOLLE,
DIREKTOR DES INST. FÜR EXP. THERAPIE UND DES GEORG SPEYER-HAUSES, O. HONORARPROFESSOR AN DER UNIVERSITÄT FRANKFURT A. M.

Heft 8.

W. Kolle und H. Schlo Bberger, Experimentelle Studien mit Diphtheriebakterien und Diphtherieantitoxin an Mäusen. (Mit Tafel I und II.) W. Kolle, K. Joseph und H. Schloßberger, Untersuchungen über die Avidität der Diphtherieantitoxine und über die Polyvalenz der
Binz H B aus
. Binz, H. Bauer und A. Hallstein, Zur Kenntnis des Silbersalvarsan natriums. (2. Mitteilung.)
Hugo Bauer, Kolloidchemische Studien in der Salvarsanreihe. Zur Kenntnis des Silbersalvarsannatriums. (3. Mitteilung.) (Mit 1 Abbildung im Text.)

JENA VERLAG VON GUSTAV FISCHER 1919

Experimentelle Studien

 mit Diphtheriebakterien und Diphtherieantitoxin an MäusenVon
Prof. Dr. W. Kolle und Dr. H. Schloßberger
Mit Tafel I und II

Ueber die Tierpathogenität der Diphtheriebacillen findet man in den Lehr- und Handbüchern der Bakteriologie als Ergebnis der Tier versuche die Angabe verzeichnet, daß sich Mäuse und Ratten im Gegensatz zu den übrigen Laboratoriumstieren diesen Mikroorganismen und ihren Giften gegenüber refraktär verhalten. Diese allgemein verbreitete Ansicht ist letzten Endes wohl darauf zurückzuführen, daß es F. Loeffler, wie er 1884 in seiner ersten Arbeit über den Erreger der menschlichen Diphtherie ${ }^{1}$) mitteilte, trotz zahlreicher Versuche an Mäusen und Ratten nicht gelungen ist, diese Tiere durch Verimpfen von Diphtheriebacillen krank zu machen oder tödlich zu infizieren. Diese Befunde sind später nicht angezweifelt oder mit anderem Erfolg nachgeprüft worden, weil zur Infektion der Mäuse nur Bouillonkulturen und alte Laboratoriumsstämme verwandt wurden.
E. Roux und A. Yersin ${ }^{2}$) wiesen allerdings auf Grund ihrer Meerschweinchenversuche darauf hin, daß die von LÖFFLER bei seinen Untersuchungen benützten Diphtheriestämme offenbar sehr wenig virulent gewesen waren. Mäuseversuche stellten sie indessen nur mit Diphtheriegift an; es gelang ihnen jedoch erst durch Injektion von $1,0 \mathrm{ccm}$ eines im Vakuum auf den 17 . Teil seines Volumens eingeengten Diphtherie-Bouillongiftes, einer Menge, die 80 tödlichen Dosen für Meerschweinchen entsprach, Mäuse zu töten. E. v. Behring und Kitashima ${ }^{3}$) konnten auf Grund ihrer vergleichenden Untersuchungen über die Diphtheriegiftempfindlichkeit und die bakterielle Empfänglichkeit des Tierkörpers, zu denen sie unter anderem auch weiße Mäuse heranzogen, nachweisen, daß, um Mäuse zu töten, eine, auf das gleiche Körpergewicht berechnet, 6000 mal größere Dosis einer 24 -stündigen Bouillonkultur ($0,3 \mathrm{ccm}$ für eine Maus von 13 g) ihres Diphtheriestammes erforderlich war, als für Meerschweinchen. Für die tödliche Intoxikation der weißen Mäuse waren, wie diese Autoren weiter zeigen konnten, jedoch 10000 mal größere Mengen Diphtheriegift als für Meer-

1) Mitteil. a. d. Kaiserl. Gesundheitsamte, Bd. 2, 1884, S. 451
2) Annal. de l'Institut Pasteur, T. 2, 1888, p. 629.
3) Berl. klin. Wochenschr., 1901, Nr. 6.
schweinchen, ebenfalls auf gleiches Lebendgewicht bezogen, erforderlich Auch Lusena ${ }^{1}$) konnte bei weißen Mäusen eine erhebliche Resistenz gegenüber dem Diphtherietoxin nachweisen.

In Anbetracht dieser spärlichen Angaben in der Literatur erschien es dringend notwendig, die Frage der Mäusepathogenität der Diphtheriebacillen und ihres Giftes einer erneuten Prüfung auf breitester Grundlage zu unterziehen. Anläßlich umfangreicher Untersuchungen über die Heilwirkung des Diphtherieserums, über die zum Teil bereits an anderer Stelle ${ }^{2}$) eingehend berichtet wurde, standen uns eine größere Anzahl frischer, aus diphtherischen Belägen und Wunddiphtheriefällen gezüchteter Diphtheriekulturen ${ }^{3}$), deren Virulenz im Meerschweinchenversuch festgestellt worden war, sowie mit den meisten dieser Stämme hergestellte und ebenfalls in ihrer Giftigkeit für Meerschweinchen genau ausgewertete Toluolgifte zur Verfügung. Wir benützten diese Gelegenheit dazu, die krankmachende Wirkung dieser für Meerschweinchen zum Teil hochpathogenen Stämme und ihrer Giifte auch bei Mäusen zu prüfen ${ }^{4}$). Zum Vergleich dienten der als starker Giftbildner bekannte und für die Serumherstellung allgemein benützte amerikanische Stamm Park-Williams Nr. 8 (D 5 unserer Kulturensammlung) und das mit dieser Kultur hergestellte Diphtherietestgift, außerdem ein avirulenter atoxischer Stamm (D 9), der aus Diphtheriematerial gezüchtet worden war.

Für unsere Versuche benützten wir im Gegensatz zu v. Behring und Kitashima ausschließlich 24-stündige, gut gewachsene Löffler-Serumkulturen, da wir bei unseren Meerschweinchenversuchen in Uebereinstimmung mit anderen Autoren die Feststellung machen konnten, daß. die Virulenz der Diphtheriebacillen durch die Züchtung auf Bouillon bedeutend herabgesetzt wird. Die Abmessung der den Versuchstieren einzuverleibenden Bakterienmenge wurde mit einer Platinöse von 1 mm Durchmesser vorgenommen. Der Inhalt der Oese wurde in Bouillon aufgeschwemmt; die Verdünnungen wurden ebenfalls mit Bouillon hergestellt. Die Injektion erfolgte ausschließlich subkutan, und zwar wurden durchweg $0,5 \mathrm{ccm}$ verschieden starker

1) Accad. Med. Genova, 1905
2) Med. Klin., 1919, Nr. 1, 4, 23 u. 24
3) Ein Teil dieser Kulturen wurde uns von Herrn Prof. Dr. Braun am Hygien. Institut d. Universität Frankfurt a. M. (Direktor: Geh. Med.-Rat Prof. Dr. M. Neisser) überlassen. Außerdem hatte Herr Oberstabsarzt Dr. A. Nieter, Vorst. d. Bakt. Abt. d. hygien.-chem. Untersuchungsanst. des 4. Armeekorps in Magdeburg die große Liebenswürdigkeit, uns einige der on ihm bei w und 23 . S. 239) zur Verfügung zu 26) (cf. Münch. med. Wochenschr., 1919, Nr. 9,
4) Die dieser Arbeit zugrund
wirkung der Laborantinnen Fräulein \ln. wirkung der Laborantinnen Fräulein E. KrüGer und Fräulein H. Lan
sowie des Präparators des Instituts, Herrn C. Göldner, ausgeführt.

Bacillenemulsionen injiziert. Von den Toluolgiften wurden je 1,0 und $0,5 \mathrm{ccm}$ eingespritzt. Die zu den Versuchen benätzten Mäuse hatten ein Gewicht von $15-20 \mathrm{~g}$; die Tiere wurden 12 Tage lang beobachtet.

Während die Einverleibung der Toluolgifte selbst in Mengen von $1,0 \mathrm{ccm}$, entsprechend 5 bis 100 tödlichen Dosen für Meerschweinchen, absolutkeine Krankheitserscheinungen bei den weißen Mäusen hervorrief, zeigten sich zu unserer Ueberraschung die Tiere gegenüber den lebenden Infektionserregern gar nicht so wenig empfänglich, wie dies sonst allgemein angenommen wurde. Von manchen der frisch gezüchteten Stämme wirkte noch $1 / 50$ Oese innerhalb 3-8 Tagen tödlich; jedoch auch von den weniger virulenten Stämmen genügte meist $1 / 5$ bis $1 / 10$ Oese, um den Tod der Mäuse innerhalb dieser Zeitregelmäßig herbeizuführen. Nach Verimpfung von Diphtheriebacillenmengen, die zur Herbeiführung des Todes nicht ausreichten, konnten wir wiederholt Ulzerationen und Nekrosen an der Impfstelle beobachten. Von dem alten Laboratoriumsstamm D 5 war $1 / 2$ Oese für die tödliche Infektion der Mäuse erforderlich. Der für Meerschweinchen apathogene Stamm D 9 zeigte auch im Mäuseversuch keine krankmachende oder tötende Wirkung ${ }^{1}$). Eine Uebersicht über diese Versuche gibt die Tabelle 1 auf S. 8.

Bei der Sektion der infolge der Diphtherieinfektion gestorbenen Mäuse findet man, wie dies auch v. Behring und Kitashima zum Teil schon beschrieben haben, an der Injektionsstelle eine starke Erweiterung und Füllung der Blutgefäße, ein zellenreiches, abszeßartig abgegrenztes Infiltrat und in demselben konstant größte Mengen von Diphtheriebacillen (s. Fig. 1 und 2 auf Tafel I) ${ }^{2}$). Die Nebennieren sind regelmäßig intensiv gerötet (Fig. 3 auf Tafel II); bei der mikroskopischen Untersuchung sind dieselben pathologischen Veränderungen in den Nebennieren der Mäuse nachweisbar, wie bei Meerschweinchen; die Gefäße der Rindenschicht sind hochgradig erweitert und mit Blut überfüll, die Epithelien atrophisch (Fig. 4 auf Tafel II). Exsudat in der Brusthöhle ist nicht vorhanden, dagegen ist vielfach starke Hyperämie und Injektion der Darmschleimhaut nachweisbar. Die übrigen inneren Organe zeigen makroskopisch keine Veränderungen, doch konnten fast stets Diphtheriebacillen in der Milz kulturell nachgewiesen werden. Es findet also offenbar von dem lokalen Prozeß an der Impfstelle aus eine Verschleppung der Bakterien auf dem Blutwege, eine Allgemeininfektion, statt.

1) Weitere Untersuchungen über die Empfindlichkeit der weißen Mäuse gegenüber eingeengten Toluolgiften werden von Dr. K. Josepr und Dr. H. Schlossberger ausgeführt.
2) Die auf den beiden Tafeln reproduzierten Farbenphotographien wurden von Herrn H. MaAs, wissenschaftlichem Photographen am Georg Speyer-Hause, angefertigt.

Tabelle 1*).
Uebersicht über die Mäuse- und Meerschweinchenpathogenit herangezogenen Diphtheriestämme D 1 bis D 26 (24-strindige der zur Untersuchung Serum), sowie der entsprechenden Toluolgifte.

$\begin{aligned} & \text { Stamm- } \\ & \text { Nr. } \end{aligned}$	Prüfung an Mäusen								Prüfung an Meerschweinchen, tödl.Mindestmenge	
	lebende Bakterien						Toluolgift		lebende Bakterie	Toluol-
	$\begin{gathered} 1 \\ \text { Oese } \end{gathered}$	$\begin{gathered} 1 / 2 \\ \text { Oese } \end{gathered}$	$\begin{gathered} 1 / 5 \\ \text { Oese } \end{gathered}$	$\begin{aligned} & 1 / 10 \\ & \text { Oese } \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & \text { Oese } \end{aligned}$	$\begin{aligned} & 1 / 50 \\ & \text { Oese } \end{aligned}$	$\begin{gathered} 1,0 \\ \mathrm{ccm} \end{gathered}$	$\begin{gathered} 0,5 \\ \text { com } \end{gathered}$	Oesen	ccm
D 1										
$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{D} 3 \end{aligned}$	+3	+ 4	$\begin{array}{r}+8 \\ +6 \\ \hline\end{array}$	+	+	+ ${ }_{+}^{6}$		lebt		
$\begin{array}{ll} \mathrm{D} & 3 \\ \mathrm{D} & 4 \end{array}$	+4 +3 +	+5	+ +7	$\dagger 10$	lebt	lebt	,	",	1/100	$0,08$
${ }^{\text {D }} 5$	+	75 +7	${ }_{\text {lebt }}{ }^{\text { }}$	lebt	"	"	",		1/200	0,01
D 6	+ ${ }^{+}$	+	- +7	+"8	"	"	"	"	${ }^{1} / 50$	0,016
D 7	+5	lebt	lebt	lebt	"	",	",	",	1/100	0,08 0,05
D 8	${ }^{\dagger}+5$	† 6	+ 8	"	"	"	",	",	$1 / 125$ $1 / 100$	0,05
D ${ }^{\text {d }}$	lebt	lebt	lebt	"	"	",	",	",	100	
D 11	+3 +7	\dagger +8 +8	$\stackrel{+}{\dagger}{ }_{\text {lebt }}$	",	",	"	"	"	$1 / 125$	
D 12	+3	+ 7	+7	",	"	"	"		$1 / 100$ $1 / 200$	0,18 0,05
	+7	+7	+7				",	",	$1 / 250$ 1 175	0,05 0,15
D D 14 D	+7	+7 +6	+7	$+" 10$	${ }_{\text {lebt }}^{\dagger}$	""		",	1/25	0,01
D 16	$+3$	+ 7	-8	lebt		"	"	"	$1 / 100$	0,05
D 17	+3	$+5$	+10	",	"	"	"	",	${ }^{1 / 125}$	0,01 0,05
D 18	± 4	$+5$	lebt		"	"	,	",	150	0,05 0,15
D 190	+5	+5 +8	${ }_{\text {¢ }}^{+}{ }^{\text {c }}$	".	"	",	",	",	1/100	0,08
D 21	+ 8	+8	\dagger	+"10	"	",	",	"	$1 / 10$	0,05
D 22	+5	+6	± 7	lebt		"	"		$1 / 10$	
D 24	+2	+2	lebt	${ }_{\text {¢ }}{ }_{\text {¢ }}{ }^{\text {d }}$	lebt	"			$1 / 100$	-
D 25	+2	+2	lebt	lebt		"			1/100	
D 26	$\dagger 2$	+2	\dagger	+"7		"			1/100	

Es war naheliegend, dieses merkwürdige Verhalten der weißen Mäuse - einerseits eine außerordentliche Resistenz gegenüber den Diphtheriegiften, andererseits eine, wenn auch im Vergleich zur Meerschweinchenpathogenität nicht so erhebliche Empfindlichkeit gegenüber den lebenden Diphtheriebacillen - auf einen Gehalt des Mäuseblutes an Antitoxinen zurückzuführen und dementsprechend anzunehmen, daß der Tod bei den mit lebenden Bakterien infizierten Mäuse die Folge der krankmachenden Wịrkung der Bakterien selbst, nicht des von ihnen produzierten Toxins darstellt. Wir konnten jedoch im Mäuseserum keine Antitoxine nachweisen ${ }^{1}$): 1 ccm

1) Auch das Rattenserum enthält keine Antitoxine, wie dies H. Aronson (Berl. klin. Wochenschr., 1893, S. 592 u. 625), J. Kuprianow (Centralbl.

Mäuseserum ist nicht imstande, im Mischungsversuch Meerschweinchen gegen den 10. Teil der L_{+}-Dosis des Testgiftes zu schützen; das Serum enthält also nicht, 1 lio Antitoxineinheit im Kubikzentimeter.

Zur weiteren Klärung der Frage war es daher unbedingt erforderlich, festzustellen, ob dem gewöhnlichen, mit Reagenzglasgiften hergestellten antitoxischen Diphtherieheilserum irgendwelche Wirkung auf die Diphtherieinfektion der Mäuse zukommt. Es wäre ja immerhin denkbar gewesen, daß der Diphtheriebacillus im Tierkörper, neben dem von ihm auch in vitro gebildeten dominanten Toxin, noch ein anderes Gift produzierte, das im Gegensatz zu den Reagensglasgiften auch im Mäusekörper krankmachend und tödlich wirkte. Nach der Ansicht verschiedener, besonders französischer Autoren ${ }^{1}$) sollen ja die Diphtheriebacillen nicht nur durch ihr Toxin, sondern auch noch durch ihre Leibessubstanz (Endotoxin) auf den von ihnen befallenen Organismus einwirken. Zahlreiche Forscher ${ }^{2}$) glaubten in den Körpern der Diphtheriebacillen giftige, entzündungserregende Stoffe nachgewiesen zu haben ${ }_{3}$ welche vom antitoxischen Heilserum nicht beeinflußt werden.

Für uns war die Beantwortung dieser Frage von ganz besonderem Interesse, denn zutreffendenfalls hätte man auch annehmen können, daß die Entstehung eines von den Reagenzglasgiften differenten Toxins
f. Bakt., Abt. I, Bd. 16, 1894, S. 415) und L. Cobbett (Brit. med. Journ., 1899, Vol. 1, p. 902) feststellten. Dagegen ist, wie H. Aronson nachwies, das antitoxinfreie Rattenserum imstande, den Tod von mit Diphtherietoxin gespritzten Meerschweinchen zu verzögern.

1) Roux (10. Intern. Kongr. f. Hyg. u. Demogr., Paris 1900, und 13 . Intern. Kongr. f. Hyg. u. Demogr., Brüssel 1903), L. Martin (C. r. Soc. de Biol. T. 55, 1903, p. 624), sowie L. Martin, L. Momont und A. Prevot (13. Intern. Kongr. f. Hyg. u. Demogr., Brüssel 1903), J. Danysz (zit. nach Roux, 10. Intern. Kongr. f. Hyg., Paris 1900), Denys und Rodhain (13. Intern. Kongr. f. Hyg., Brüssel 1903), J. Bandi (Centralbl. f. Bakt., Abt. I, Orig., Bd. 33, 1903, S. 535),
M. Nicolle und G. Loiseau (C. r. Soc. de Biol., T. 69, 1910, No. 24, und Annal. de l'Institut Pasteur, T. 25, 1911, p. 150) u. a.
2) L. Brieger und C. Boer (Deutsche med. Wochenschr., 1896, S. 783); A. Wassermann (Deutsche med. Wochenschr., 1902, Nr. 44, S. 785) M. E. Rist, (C. r. Soc. de Biol., T. 55, 1903, p. 978); L. Cruveilhier (C. r Soc. de Biol., T. 66, 1909, p. 1029); E. C. Aviragnet, L. Bloch-Michel und H. Dorlencourt (C. r. Soc. de Biol., T. 70, 1911, p. 325); J. Bandi und E. Gagnoni (Centralbl. f. Bakt., Abt. I, Orig., Bd. 41, 1906, S. 386 und 487, cf. auch J. Bandi, Centralbl. f. Bakt., Abt. I, Orig., Bd. 60, 1911 S. 251) ; P. J. Mheard (C. r. Soc. de Biol., T. 71, 1911, p. 448); R. T. Hewlett und A. T. Nankiwell (Lancet, 1912, Vol. 2, p. 143); D. Pacchioni und O. Bint (Riv. Clin. Pediatr., T. 8, 1910, p. 1). Auch das von C. Lubenad (Centralbl. f. Bakt., Abt. I, Orig., Bd. 30, 1901), J. Schwoner (Centalbl. f. Bakt., Abt. I, Orig., Bd. 35, 1904, S. 608) und W. Weshlow (Rußky Wratsch, 1913, No. 8, p. 253, und Charkowsky Med. Journ., 1914, No. 1) Hamolysin dor Hämolysin der Diphtheriebacillen wird darch das Diphtherieheilserum nich beeinflußt.
auch im Menschenkörper stattfindet. Die neuerdings wieder von klinischer Seite ${ }^{1}$) behauptete geringe therapeutische Wirksamkeit des ntitoxischen Diphtherieheilserums hätte dadurch eine einfankeit de schaftliche Begründung gefunden.

Die Versuche mit antitoxischem Serum wurden derart angestellt daß das Serum entweder 24 Stunden vor (prophylaktischer Versuch) oder 4 Stunden nach (therapeutischer Versuch) der subkutanen Infektion mit lebender Diphtheriekultur, und zwar ebenfalls unter die Haut injiziert wurde. Es wurde 500 -faches karbolfreies Diphtherieheilserum aus den Höchster Farbwerken und als Kontrolle antitoxinfreies, nicht karbolisiertes normales Pferdeserum verwendet

Dabei zeigte es sich, daß es sich bei d
Diphtheriebacillen hervorgerufen Diphtheriebacillen hervorgerufenen Erkrankung der weißen Mäuse, ebenso wie bei der Erkrankung der anderen Versuchstiere um eine echte Diphtherievergiftung handelt, denndasmit Reagenzglasgiften hergestellte antitoxische Diphtherieserum ist imstande, sowohlim prophylaktischen, wie im Heilversuch die Mäusezu schützen bzw. zu heilen. Allerdings sind in beiden Fällen erheblich größere Mengen (10 bis 20 mal mehr) Antitoxin, als im Meerschweinchenversuch erforderlich. Es dürfte dies wohl darauf zurückzuführen sein, daß infolge der geringen Giftempfindlichkeit der Mäuse der Bakterienvermehrung und damit auch der Giftbildung viel weniger Einhalt geboten wird als bei giftempfindlichen Tieren, wie z. B. den Meerschweinchen, daß dementsprechend viel größere Toxinmengen neutralisiert werden müssen. Im Gegensatz zum antitoxischen Diphtherieserum entfaltet das normale Pferdeserum bei der Diphtherieinfektion der weißen Mäuse, auch in großen Dosen (0,5 bis $1,0 \mathrm{ccm}$) weder Schutz-noch Heilwirkung. (Siehe Tabellen 2-4 auf S. 11 und 12).

Die große Resistenz der Mäuse gegenüber dem Diphtheriegift ist also, wie aus diesen Versuchen hervorgeht, keine absolute, sondern nur eine relative. Es müssen dementsprechend auch giftempfindliche Zellen im Körper der Maus vorhanden sein. Demgemäß kann, in Anbetracht des Fehlens von Antitoxinen im Blut, die natürliche, starke Widerstandsfähigkeit der Maus gegen Diphtheriegift, wie dies G. Dean ${ }^{2}$) annimmt, nur darauf beruhen, daß die auf das Diphtherietoxin eingestellten Rezeptoren in der Maus über den ganzen Körper verteilt sind, so daß eine gewiße Ablenkung des Toxins von den lebenswichtigen Organen stattfindet, die jedoch nach Ueberschreitung eines gewissen

> 1) A. Bingel, Deutsches Archiv f. klin. Medizin, 1918, Bd. 125, Heft 4-6. Auch als Monographie "Ueber Behandlung der Diphtherie mit gewöhnlichem Pferdeserum" erschienen (Leipzig, Vogel, 1918.
> 2) G. Dean, The types of immunity, in: G. H. F. NutTal and G. S. Graham-Smith, The bakteriology of diphtheria, Cambridge 1908, p. 449.

Studien mit Diphtheriebakterien und Diphtherieantitoxin an Mäusen. 1
Schwellenwertes den Ausbruch der Erkrankung nicht verhindern kann. Vielleicht spielt auch, wie dies A. Pettit ${ }^{1}$) bei den Ratten annimmt, eine besondere Widerstandsfähigkeit der Körpergewebe eine Rolle.

Tabelle 2.
Heilversuch bei Mäusen. D 14, 24-stündige Löffler-Serumkulturen, $1 / 5 \mathrm{bzw}$. ${ }^{1 / 10}$ Oese subkutan. Nach 4 Stunden
Serum (Diphtherieheilserum Höchst 500 -fach bzw. normales Pferdeserum) subkutan.

Maus Nr.	Kulturmenge D 14 subkutan	Serum subkutan	Verlauf
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	$\begin{array}{cc} 1 / 5 & \text { Oese } \\ 1 " \\ 1 / 10 & " \\ 1 / 5 & " \\ 1 / 5 & " \\ 1 / 10 & " \\ 1 / & " \\ 1 / 5 & " \\ 1 / 10 & \cdots \\ 1 / 2 & " \\ 1 / 5 & " \\ 1 / 10 & " \\ 1 / 100 & " \\ 1 / 50 & " \end{array}$		

Tabelle 3.
Prophylaktischer Versuch bei Mäusen.
Serum (Diphtherieheilserum Höchst 500 -fach bzw. normales Pferdeserum) an Mäuse subkutan. Nach 24 Stunden subkutane Infektion mit D 1 (24-stündige Löffler-

Maus Nr.	Serum subkutan	$\begin{aligned} & \text { Kulturmenge D } 1 \\ & \text { subkutan } \\ & \text { nach } 24 \text { Stunden } \end{aligned}$	Verlauf
1	250 A.E.	1/5 Oese	glatt
${ }_{3}^{2}$	"	" "	"
4			
5	20	1/5	\dagger 7, typ." Befund
7	"	$1 \%_{10}$	
8			\dagger 10, typ. Befund
10	0,5 cem norm. Pf.-S.	", "	\dagger + + +
11	$\text { " } \quad \text { " } \quad \text { " } \quad \text { " }$	$1 / 10$ "	- + 6, \quad - \quad -
12	" " "		† 7, " ",
14	-	1/50 ",	
${ }_{16}^{15}$	-	$\begin{array}{ll} 1 / 100 \\ 1 / 20 & \prime \prime \end{array}$	+ 5, " \quad,

1) C. r. Soc. de Biol., T. 74, 1913, p. 1198, u. Annal. de l'Institut Past., T. 28, 1914, p. 663.

Fallende Mencen Prophylaktischer Versuch bei Mäsen.
serum) an Mäun Serum (Diphtherieheilserum Höchst 500 -fach bzw. normales Pferde an Mause subkutan. Nach 24 Stunden subkutane Infektion mit D2 (24-stün-
dige Löffler-Serumkulturen), je $1 / 5$ Oese.

Maus Nr.	Serum subkutan	$\begin{aligned} & \hline \text { Kulturmenge D } 2 \\ & \text { subkutan } \\ & \text { nach } 24 \text { Stunden } \\ & \hline \end{aligned}$	Verlauf
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	150 A.E. 100 "	$\begin{aligned} & \text { 1/5 Oese } \\ & \text { dgl. } \end{aligned}$	glatt
4		"	,
5 6	50 "	"	± 3, typ. Befund
7	23	"	+ 4, " \quad,
${ }_{9}$	10 ",	",	+ 3 ,
10		"	+4; ",
11	$0,5 \mathrm{ccm}$ norm. Pf.-S.	"	
12		",	+3, "
14	-	"	+3, " \quad "

Zusammenfassung.

1) Weiße Mäuse sind gegenüber den Reagenzglasgiften der Diphtheriebacillen, auch in größeren Mengen (0,5 bis $1,0 \mathrm{ccm}$) so gut wie unempfindlich.
2) Lebende Diphtheriebacillen von frisch aus den diphtheriekranken Menschen gezüchteten Stämmen zeigen eine erhebliche Mäusepathogenität. Die Tiere sterben nach Einverleibung von $1 / 2$ bis $1 / 50$ Oese der auf Löfflerserum gezüchteten Bakterien regelmäßig im Verlauf von 3-8 Tagen
3) Diese Wirkung der lebenden Diphtheriebacillen beruht auf einer Intoxikation. Das von den Bacillen im Tierkörper erzeugte und zum Tode führende Toxin ist mit dem von den Diphtheriebacillen in vitro gebildeten Gift identisch, denn das mit Reagenzglasgiften hergestellte antitoxische Diphtherieserum entfaltet bei der Diphtherieinfektion der Mäuse sichere Schutz- und Heilwirkung.
4) Das normale, antitoxinfreie Pferdeserum hat selbst in Dosen von 0,5 bis $1,0 \mathrm{ccm}$ im Gegensatz zum antitoxischen Serum bei der Diphtherieerkrankung der weißen Mäuse weder prophylaktisch noch therapeutisch irgendwelche Wirkung.

Erklärung der Abbildungen.
Tafel I.
jektion der Gefäße subl mitan mit Diphtheriebacillen infiziert. An der Impfstelle InFig. 2. Ausstrich aus dem Abszeß an der Impfstelle. Vergr. $1: 600$ Tafel II.
Fig. 3. Nebennieren einer normalen und einer an Diphtherieinfektion gestorbenen
Maus. Naturliche Größe Maus. Natürliche Größe. Schnite, gefärbt mit Hämatoxylin-Eosin. Vergr. I: 370 .

Fig. 1.

Verlag von Gustav Fischer in Jena

Untersuchungen über die Avidität der Diphtherieantitoxine und über die Polyvalenz der Diphtheriesera

Prof. Dr. W. Kolle, Dr. K. Joseph und Dr. H. Schloßberger

Die Einführung des Diphtherieantitoxins in die Praxis der Diphtherietherapie hatte zur Vorbedingung, daß die Diphtheriebacillen durch das von ihnen im befallenen Organismus erzeugte Gift krankmachend wirken und daß dieses Toxin mit dem beim Wachstum der Diphtheriebacillen in Bouillon gebildeten Gift identisch ist und deshalb durch das Diphtherieantitoxin neutralisiert wird. Ferner aber war vorauszusetzen, daß die von verschiedenen Diphtheriestämmen sezernierten Diphtheriegifte qualitativ, d. h. insbesondere in immunisatorischer Hinsicht, keine erheblichen Unterschiede aufweisen, daß also das mit dem Gift eines Stammes erzeugte Antitoxin heterologe Diphtheriegifte in denselben Mengenverhältnissen wie das homologe Toxin zu neutralisieren imstande ist. Die Frage, ob das mit dem Gift eines Stammes hergestellte Diphtherieserum die Gifte aller Diphtheriestämme gleichmäßig beeinflußt, ist von praktischer Bedeutung zur Beurteilung der Fälle, in denen das Diphtherieserum therapeutisch versagt, wie es gelegentlich bei schweren und schwersten, manchmal aber auch bei scheinbar ganz leichten Fällen von menschlicher Diphtherie vorkommt. Wäre das Diphtherieserum, das bekanntlich fast überall nur mit einem Stamm hergestellt wird, nicht polyvalent wirksam, so könnte sich die Tatsache, daß in manchen Diphtheriefällen selbst größte Antitoxinmengen, wie sie von zahlreichen Autoren empfohlen wurden, nicht mehr imstande sind, das Leben des Patienten zu retten, damit erklären lassen.

Wir lassen Roux' Lehre außer acht, der den Diphtheriebacillen eine doppelte krankmachende Wirkung - einmal durch ihr Toxin, dann aber auch durch ihre Leibessubstanz - vindiziert und dementsprechend den Heilwert des Diphtherieserums nicht nur nach der in ihm enthaltenen Antitoxinmenge, sondern auch nach seinem Gehalt an sogenannten "antimikrobischen" oder ,,präventiven" Stoffen, deren Natur er jedoch nicht näher analysieren konnte, beurteilt. Dagegen ist, ehe wir die Frage der Polyvalenz näher besprechen, auf die Einwände mancher Kritiker der antitoxischen Heilserumtherapie, die immer
wieder den Beweis dafür zu erbringen versuchten, daß der Heilwert eines Diphtherieserums nicht durch seinen, nach der von P. Ehrlich ausgearbeiteten Methode bestimmten Gehalt an Antitoxineinheiten ausgedrückt werde, einzugehen.
R. Kraus ${ }^{1}$) und seine Mitarbeiter nehmen zwar an, daß die therapeutische Wirkung des Diphtherieserums ausschließlich auf seinem Gehalt an Antitoxinen beruht. Durch ihre Versuche glauben sie jedoch, den Nachweis dafür erbracht zu haben, daß die Antitoxine nicht gleichartig sind, sondern sich durch die verschieden große Avidität ihrer Rezeptoren zum Diphtheriegift unterscheiden. Sie sind der Ansicht, daß die Ehrlichsche Mischungsmethode, bei welcher diese Unterschiede in der Avidität der Antitoxine, die nur im Heilversuch bei ausreichend großem Zeitintervall deutlich in Erscheinung treten soll, ihrer Meinung nach nicht zum Ausdruck kommen, ein vollständig falsches Bild von dem Heilwert eines Serums gibt und durch ein anderes, auf dem Prinzip der Aviditätsbestimmung der Antitoxine beruhendes Prüfungsverfahren ersetzt werden müsse.

Durch die Untersuchungen von Marx ${ }^{2}$), S. Belfanti ${ }^{8}$), E. Steinhard und E. J. Banzhaf ${ }^{4}$), W. Berghaus ${ }^{5}$), G. Brüstlein ${ }^{6}$), Neufeld und Haendel ${ }^{7}$) sind diese Fragen an mit Diphtherietoxin vergifteten Tieren in dem Sinne geklärt worden, daß der Heilwert des Diphtherieserums seinem Antitoxingehalt proportional ist. Durch unsere Versuche ${ }^{8}$) konnten wir nachweisen, daß auch bei der subkutanen oder perkutanen Infektion der Versuchstiere mit lebenden Diphtheriebacillen der Antitoxingehalt des Serums für dessen Heilwert maßgebend ist. Die Versuchsergebnisse von Kraus, die für eine Avidität sprachen, konnten dadurch erklärt werden, daß Kraus den Antitoxingehalt der verschiedenen Sera nicht genau bestimmt hatte und infolgedessen, sowie infolge des von ihm angewandten subkutanen Injektionsmodus von Gift und Antitoxin ungleichmäßige Resultate erhielt, die ihn zur Annahme von Unterschieden in der Avidität verschiedener Diphtheriesera zu dem Toxin führten.

1) R. Kraus, Wien. klin. Wochenschr., 1908, Nr. 28; R. Kraus u. J. Schwoner, Centralbl. f. Bakt., Abt. I, Orig., Bd. 47, 1908, S. 124, und Zeitschr. f. Immunitätsforsch., Bd. 2, 1909, S. 723.
2) Zeitschr. f. Hyg. u. Inf.-Krankh., Bd. 38, 1901, S. 372.
3) Centralbl. f. Bakt., Abt. I, Orig., Bd. 47, 1908, S. 248.
4) Proc. of Soc. for exp. Biol. and Med., Vol. 5, 1907, p. 24, und 5rn. of infect. dis., Vol. 5, 1908, p. 203.
5) Centralbl. f. Bakt., Abt. I, Orig, Bd. 48,1908 , S. 450 ; Bd. 49 ,
1909 , S. 281 und Bd. 50 , 1909 . 1909, S. 281 und Bd. 50, 1909.
S. 22, Verlag. von G. Fischer, Jena. der Inf.-Krankh. Bern, Heft 3, 1909, S. 22, Verlag von G. Fischer, Jena.
6) Arb. a. d. Kaiserl. Gesundheitsamt, Bd. 38, 1912, S. 219.
7) W. Kolle u. H. Schlossberger, Med. Klin., 1919, Nr. 1, 4, $23,24$.

Durch weitere Versuche glaubte zwar Kraus ${ }^{1}$) in Gemeinschaft mit BÄcher nachgewiesen zu haben, daß die Applikationsweise des. Serums keine Rolle spielt, daß vielmehr auch bei intravenöser Verabreichung des Serums die Aviditätsunterschiede deutlich in Erscheinung treten. Bei unseren zahlreichen Heilversuchen konnten wir, auch bei längerer Beobachtung der Versuchstiere, worauf Kraus besonderen Wert legt, in keinem einzigen Falle trotz der Anwendung hoch- und niedrigwertiger Diphtheriesera älteren und neueren Datums derartige Beobachtungen machen, vielmehr konnten wir stets einen Parallelismuszwischen Heilwertund Antitoxingehalt eines Serums feststellen. Die von Kraus und Bächer (l. c.) als Argument ins Feld geführten Versuche von W. Barikine ${ }^{2}$), der den Beweis für die verschiedene Avidität der Diphtherieantitoxine in vitro erbracht zu haben glaubte, haben sich bei der Nachprüfung ebenfalls als vollständig unrichtig erwiesen. Barikine sah den Hauptfehler der Ehrlichschen Methode der Antitoxinbestimmung darin, daß die Mischung von Toxin und Antitoxin in gewöhnlicher physiologischer Kochsalzlösung und nicht im Serum der zu den Prüfungen benützten Tierart (Meerschweinchen) vorgenommen wurde, weil auf diese Weise die Avidität der Antitoxine, die angeblich nur im serumhaltigen Medium in Erscheinung trete, nicht berücksichtigt werde. Wie jedoch unsere, in dieser Richtung angestellten Versuche gezeigt haben, ergibt die Diphtherieserumprüfung bei Verwendung von Meerschweinchenserumgenau dieselben Resultate, wie bei Anwendung von physiologischer Kochsalzlösung (Tabelle 1, S. 18). Auch dadurch, daß man die Toxin-Antitoxin-Gemische (in physiologischer Kochsalzlösung oder in Meerschweinchenserum) längere Zeit hindurch (mehrere Stunden bis zu 8 Tagen) bei Zimmertemperatur stehen läßt, wird der Verlauf und das Ergebnis der Prüfung in keiner Weise beeinflußt. Es sei nur noch bemerkt, daß Barikine, der vielfach mit nicht-tödlichen Giftmengen gearbeitet hat, auf Grund der bei den Versuchstieren aufgetretenen Infiltrate seine Behauptungen aufstellte!

Für die Annahme einer verschiedenen Avidität der Antitoxine fehlt daher der einwandfreie Beweis. Vielmehr hat sich bei der experimentellen Prüfung stets gezeigt, daß der therapeutische Effekt eines Serums durch dessen Gehalt an Antitoxineinheiten bestimmt wird. Andererseits konnte man aber daran denken, daß das Versagen des im Handel befindlichen Diphtherieserums bei einer Prozentzahl der Diphtherieerkrankungen darauf zurückzuführen ist, daß zu dessen Herstellung fast ausschließlich die Bouillongifte des amerikanischen Stammes

[^0]Tabelle 1.
Prüfung des Diphtherieheilserums 2257 auf Antitoxingehalt. Toxin-Antitoxinmischung a) in physiologischer Kochsalzlösung, b) in frischem Meerschweinchenserum. Nac stündigem Stehen bei Zimmertemperatur an Meerschweinchen subkutan. L+-Dosis
des Testgiftes (Institut f. exper. Therapie, Juni 1913) $=0,32 \mathrm{ccm}$.

Meerschweinchen Nr .	Injektion			$\begin{gathered} \text { Prüfung } \\ \text { auf } \end{gathered}$	Verlauf
	Gift +	Serum	Medium		
454 455 456 457 458 459 460 461 462 463 464 465	0,32 ccm dgl.		$\left\{\begin{array}{c} \text { physiol. } \\ \text { Koch- } \\ \text { salz- } \\ \text { lösung } \\ \text { ad } \\ 4,32 \mathrm{ccm} \\ \text { Meer- } \\ \text { schwein- } \\ \text { chen- } \\ \text { serum } \\ \text { ad } \\ 4,32 \mathrm{ccm} \end{array}\right.$	800 -fach 850 900 950 1000 1050 800 850 900 950 950 1000 1050	Strängchen kl. Strang $\dagger 8$, Nekrose \dagger 3, typ. Befund +2 , Strängchen Strang \dagger 6, Nerkose $\dagger 4$, typ. Befund

Nr. 8 von Park und Williams ${ }^{1}$) (D 5 unserer Kulturensammlung) benützt wurden. Denn es wäre ja möglich, daß die Toxine verschiedener Stämme in ihrem Rezeptorenapparat mehr oder weniger prägnante Unterschiede aufweisen, während die im Diphtherieheilserum enthaltenen Antitoxine dominant auf die Toxinrezeptoren des amerikanischen Diphtheriestammes eingestellt sind. Die gelegentlich der Immunisierung•von Pferden mit Reagenzglasgiften zu machende Beobachtung, daß durch einen Wechsel des Giftes mitten in der Behandlung sehr schwere Erkrankungen, eventuell der Tod der Tiere herbeigeführt werden können, kann in dem Sinne gedeutet werden, daß die Gifte verschiedener Diphtheriekulturen Stammesunterschiede aufweisen.

Bis jetzt ist diese Frage, ob das mit dem Gift eines einzigen Stammes hergestellte Serum heterologe Gifte in denselben Mengenverhältnissen wie das homologe Gift zu neutralisieren imstande ist, unseres Wissens experimentell noch nicht bearbeitet worden. Es läßt sich a priori ja sagen, daß, selbst wenn Unterschiede in der Struktur, d. h. im Antigenapparat der einzelnen Toxine im Sinne isomerer Verbindungen chemischer Körper bestehen sollten, diese Differenzen für die Heilkraft des Diphtherieheilserums nicht von ausschlaggebender praktischer Bedeutung sein könnten. Denn nach unseren früheren Versuchen (1. c.) und nach den Ergebnissen anderer Autoren zeigt ja das mit dem Reagensglasgift des amerikanischen Stammes hergestellte Diphtherieheilserum den lebenden Diphtheriebacillen der verschiedensten Stämme und ihren Giften gegenüber Schutz- und Heilwirkung, die um so stärker ist, je mehr Antitoxineinheiten im Serum enthalten sind. Die etwa vorhandenen quantitativen Unterschiede würden stets durch

1) Journ. of exper. Med., Vol. 1, 1896, S. 164.
die Verwendung größerer Mengen hochwertigen Serums ausgeglichen werden können, vorausgesetzt, daß die Unterschiede in der Neutralisierung verschiedener Gifte durch ein Antitoxin nicht zu große sind. Es wäre daher sehr wohl denkbar, daß die einzelnen Diphtheriestämme in diesem Sinne verschiedenartige Diphtherietoxine erzeugten und daß darauf ein Versagen des Serums bei schwerer Diphtherievergiftung zurückzuführen wäre

Tabelle 2.
Mischungsversuch bei Meerschweinchen.
Antitoxisches Diphtherieheilserum $2778(350-$ fach $)$ je 1 A.E. $(=1 /$ son ccm$)+$ fallende Mengen von Toluolgift D 1, D 4, D 5 , D 14 bzw . D 16 .

Toluolgift D 4: $\begin{aligned} & \mathrm{L}+: 2,43 \mathrm{ccm} \\ & \mathrm{D} .1 \mathrm{~m} .: 0,03 \mathrm{cc}\end{aligned}$
Toluolgift D 5: $\mathrm{L}_{+}: 0,32 \mathrm{ccm}$
Toluolgift D 14: $\begin{aligned} & \text { D. I. m.: } 0,016 \mathrm{ccm} \\ & \text { D. } 1.58 \mathrm{ccm} \\ & \text { D. } \mathrm{m}: 0,025 \mathrm{~cm}\end{aligned}$
Toluolgift D 16: $\begin{aligned} & \text { D. 1. m. } \mathrm{L}+1,64 \mathrm{ccm} \mathrm{ccm} \\ & \text { D. } 1.1 . \mathrm{m} .: 0,02 \mathrm{ccm}\end{aligned}$

Die experimentelle Prüfung der Frage, inwieweit immunisatorische Unterschiede zwischen den von verschiedenen Diphtheriestämmen erzeugten Toxinen bestehen, wurde in folgender Weise durchgeführt: Bei den zu den Versuchen benützten Toluolgiften, die von verschiedenen Diphtheriestämmen gewonnen waren und die verschieden lang gelagert hatten, wurde zunächst die einfach tödliche Dosis (D.1. m.), sowie das Antitoxinbindungsvermögen ($\mathrm{L}_{0}-$ und L_{+}-Wert) im Meerschweinchenversuche genau ermittelt. Fallende Mengen dieser derart ausgewerteten Gifte wurden nun in der bei der Diphtherietestgift-Einstellung üblichen Weise mit gleichbleibenden Mengen (z. B. 1 A.E.) verschiedener monovalenter, d. h. mit dem Toxin eines Stammes hergestellter Diphtheriesera gemischt und nach $1 / 2$ stündigem Stehen bei Zimmertemperatur Meerschweinchen subkutan eingespritzt. Im ganzen wurden derart 7 Diphtheriegifte verschiedener Stämme und verschiedenen Alters gegenüber 9 verschiedenen Seris, die zum Teil durch Immunisierung mit Toluolgiften, zum Teil durch Injektionen lebender Diphtheriebacillen (Löfflerserum-Kulturen) von Pferden gewonnen worden waren, ausgewertet. In der Tabelle 2 (S. 19) ist ein derartiges Versuchsprotokoll wiedergegeben.

Dabei zeigte es sich, daß allerdings durch eine bestimmte Menge Antitoxin von dem einen Gift mehr, von dem anderen Gift weniger tödliche Dosen neutralisiert wurden. Die. Ursache für diese Unterschiede im Mischungsversuch, die auch bei gleich alten Giften verschiedener Diphtheriestämme in Erscheinung traten, konnten selbstverständlich in Differenzen des Antigenapparates der verschiedenen Gifte zu suchen sein. Nun war aber das Verhältnis der durch ine gleiche Menge verschiedener Sera neutralisierten tödichen Dosen verschiedener Gifte stets dasselbe. So wurden z. B. durch $1 / 70 \mathrm{ccm}(=1$ A.E.) des Serums 2727 , das mit dem Gift des Stammes D 4 hergestellt war, ungefähr 70 tödliche Dosen des Giftes D 1, bzw. 65 tödliche Dosen des Giftes D 14, bzw. 20 tödliche Dosen des Giftes D 5, bzw. 83 tödliche Dosen des homologen Giftes D 4 neutralisiert. Dieselben Mengen Toxin wurden aber auch durch $1 / 500$ ccm ($=1$ A.E.) eines mit dem Stamm D 5 hergestellten Serums gebunden. Durch das homologe Antitoxin wurden also dieselben relativen Giftmengen wie durch ein heterologes Antitoxin unschädlich gemacht, eine Aenderung des gegenseitigen Verhältnisses, wie sie beim Bestehen von Differenzen im Rezeptorenapparat bei dieser Versuchsanordnung logischerweise hätte in Erscheinung treten müssen, war in keinem Falle fest-
zustellen. zustellen.

Dementsprechend können die Unterschiede zwischen Gehalt an Gifteinheiten, und Antitoxinbindungsvermögen, wie sie bei unseren

Untersuchungen über die Avidităt der Diphtherieantitoxine etc. 21
Giften zutage getreten sind, nach dem Vorgange Ehrlichs ${ }^{1}$), der seine Untersuchungen allerdings an einem und demselben Gift nach verschieden langem Lagern anstellte, wohl nur auf den verschiedenen Gehalt der Gifte an nichtgiftigen bindenden Gruppen, d. h. an Toxoiden, zurückgeführt werden.

Tabelle 3.
Absättigungsversuche bei Diphtheriegift D5 und D 14.

$$
\begin{aligned}
& \text { Toluolgift D 5: } \begin{array}{c}
\text { L+ Wert: } \\
\text { D. } 1.032 \mathrm{ccm} \\
\text { m.: } 0,016 \mathrm{ccm}
\end{array}=20 \text { D. 1. m. } \\
& \text { Toluolgift D 14: L. We W.: } 0,016 \mathrm{ccm} \\
& \text { D. 1. m.: } 0,025 \mathrm{ccm}=63 \mathrm{D} .1 \mathrm{~m} \\
& \text { Toluolgift D 4: } L_{+} \text {Wert: }: 2,43 \mathrm{ccm}=83 \mathrm{D} .1 \mathrm{~m} \text {. } \\
& \text { Toluolgift D 16: } \begin{array}{l}
\text { D. } 1 . \text { m. }: \begin{array}{l}
\text { L. } 0,03 \mathrm{ccm} \\
\text { D. } 1 . \mathrm{m} .: 1,04 \mathrm{ccm}=82 \mathrm{~cm}
\end{array} \mathrm{D} .1 . \mathrm{m} .
\end{array}
\end{aligned}
$$

Wert difte + file M.
Wert der Gifte + fallende Mengen Antitoxin $(1 / 5,2 / 5,3 / 5,4 / 5,1$ A.E.). Prüfung
der Mischungen auf die Anzahl der in ihnen enthaltenen todlichen Dosen.

1) Berl. klin. Wochenschr., 1903, Nr. 35-37.

Zur Ergänzung dieser Versuche wurden daher noch die Giftspektra bei 4 von unseren Diphtheriegiften durch partielle Absättigung nach Ehrlich (l. c.) ermittelt, um auf diese Weise den Gehalt der verschiedenen Gifte an Komponenten verschiedener Affinität zum Antitoxin festzustellen. Zu der L_{+}-Dosis des betreffenden Giftes wurden fallende Antitoxinmengen ($1 / 5,2 / 5,3 / 5,4 / 5,1$ A.E.) zugesetzt; die derart erhaltenen Mischungen wurden dann in der gewöhnlichen Weise auf ihren Gehalt an tödlichen Dosen (direkter Giftwert) an Meerschweinchen geprüft. Wir konnten auf diese Weise bei den vier untersuchten Giften zwar Unterschiede in der Menge der einzelnen Giftkomponenten (Toxine und Toxoide), jedoch keine Differenzen in der Avidität derselben, wie sie Ehrlich (l. c.) bei dem von ihm untersuchten Diphtheriegift konstatierte (Proto-, Deutero-, Epitoxoide etc.), feststellen, vielmehr ging die Abnahme der Giftigkeit dem Antitoxinzusatz bzw. dem Toxingehalt des Giftes genau parallel. Dies ist vielleicht darauf zurückzuführen daß wir bei der Absättigung größere Sprünge darauf zurückzuführen,
dachten daß wir bei der Absättigung großere sprunge machten als Ehrlich, der $1 / 20,2 / 20,3 / 20$ etc. Antitoxineinheiten zu der L_{+}-Dose zusetzte während die von uns benutzten Mengen viermal so groß waren. In Tabelle 3 (S. 21) sind derartige Versuchsprotokolle wiedergegeben

Zusammenfassung.

1) Diphtherieheilserum, das mit dem Bouillongift eines Stammes hergestellt ist, wirkt bei prophylaktischer und therapeutischer Anwendung in denselben quantitativen Verhältnissen auch auf die Bouillongifte heterologer Stämme.
2) Im Mischungsversuche werden durch eine bestimmte Antitoxinmenge bei verschiedenen Giften verschiedene Mengen tödlicher Dosen neutralisiert. Diese relativen Giftmengen sind jedoch bei Verwendung verschiedener homologer und heterologer Antitoxine stet Verwen-
3) Bei den zu unseren Versuchen Antitoxine stets dieselben. konnten Unterschiede im Rezeptorenapparat nicht nachgewiesen werden.
4) Wenn bei den von uns untersuchten monovalenten Antitoxinen Unterschiede in der Wirkung auf verschiedene Gifte auch nicht festUnterschiede in der Wirkung auf verschiedene Gifte auch nicht fest-
gestellt werden konnten, so sind doch noch weitere experimentelle Studien erforderlich, um die Frage der Polyvalenz endgültig zu klären.

Zur Kenntnis des Silbersalvarsannatriums

(2. Mitteilung)

Von
A. Binz, H. Bauer und A. Hallstein

Von den von Ehrircu zuerst beobachteten Einwirkungsprodukten von Metallsalzen auf Salvarsan wird das von Ehrlioh und Karrer hergestellte "Silbersalvarsan" als Natriumsalz im Großen gewonnen ${ }^{1}$), nachdem seine biologische Bedeutung durch P. Ehrlichs und W. Kolles ${ }^{2}$) Arbeiten erkannt worden ist. Ueber die bei der Darstellung des Silbersalvarsannatriums stattindende Reaktion hatte man bisher noch keine begründete Vorstellung. Auch konnte man über die Einheitlichkeit des Reaktionsproduktes, wie noch dargelegt werden wird, im Zweifel sein. Ueber all das aber beansprucht der Arzt Aufklärung, da er seine Patienten nicht mit Medikamenten behandeln will, über die er sich chemisch kein Bild machen kann.

Wir bringen in der vorliegenden Arbeit ${ }^{3}$) den Nachweis, daß bei der Einwirkung von Silbersalz auf Salvarsan eine einheitliche Substanz entsteht, und daß die Reaktion nach folgendem Gleichgewichtsschema verläuft, welches mit besonderer Klarheit am Dichlorsalvarsan analytisch verfolgbar ist:

[^1]Das Silber ist komplex gebunden, ohne daß durch die hier gewählte Schreibweise etwas darüber ausgesagt sein soll, ob die Bindung der Metallatome am Stickstoff oder an einer anderen Stelle des Moleküls erfolgt.

Was zunächst die Einheitlichkeit des Einwirkungsproduktes von Silbersalz auf Salvarsan angeht, so hat Karrer in der nach Ehrlichs Tode veröffentlichten Arbeit (a. a. O.) Analysen von Präparaten beigebracht, die aus alkoholischen Lösungen stöchiometrisch bemessener Mengen von Salvarsan und Schwermetallsalzen durch Ausfällen mit Aether und dann durch Auswaschen wiederum mit Aether erhalten waren.

Karrer findet so folgende Formeln, auf deren Verschiedenheit von den unsrigen noch eingegangen werden wird.
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl} \cdot 1 \mathrm{CuCl}_{2}$ Additionsprodukte von Salvar-
$\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{CuCl}_{2}\right\}^{\text {Adan }}$ und Kupferchlorid
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl} \cdot 1 \mathrm{AgNO}_{3}$ Additionsprodukte von Salvar-

Die bei der Herstellung dieser Präparate gewählte Versuchsanord nung erschwert den Nachweis der Reinheit und Einheitlichkeit der analysierten Substanzen, weil durch das Ausfallen und Auswaschen mit Aether aus alkoholischer Lösung auch solche Bestandteile, insbesondere Metallsalze, mitgerissen werden können, die in die Waschflüssigkeit gehen sollten. Dazu kommt noch ein weiterer Einwand aus dem Wesen der Reaktion selbst: Das leicht oxydable Salvarsan wird mit Lösungen von Metallsalzen versetzt, welche stark oxydierend wirken können. Das gilt insbesondere vom Silbernitrat, bei dessen Zusatz zum Salvarsan Braunfärbung auftritt. Es drängt sich darum die Frage auf, ob nicht das Salvarsan - wenigstens teilweise - oxydiert, und das Silbersalz reduziert wird. Diese Vermutung ist um so berechtigter, weil, wie wir gefunden haben, beim Uebergießen von Arsenbenzol, der Muttersubstanz der aromatischen Arsenoverbindungen, mit verdünnter wässesubstanz der aromatischen Arsenoverbindungen, mit verdünnter wässe-
riger Silbersalzlösung fast momentan metallisches Silber und Phenylriger Silbersalzlösung fast momentan metallisches Silber und Phenyl-
arsinsäure auftreten. Zudem besteht die Möglichkeit, daß die Oxydation arsinsäure auftreten. Zudem besteht die Möglichkeit, daß die Oxydation Hydroxylgruppen einsetzt, denn das dem Salvarsan strukturell ähnliche o-Aminophenol gibt bekanntlich ${ }^{1}$) schon durch gelinde Oxydation unter Zusammentritt zweier Ringsysteme und Neubildung eines dritten eine tiefgefärbte Substanz der Formel

Ferner entsteht durch Einwirkung von Kaliumbichromat auf Aminophenolchlorhydrat in der Kälte, also unter Umständen, die der Ein-

[^2]wirkung von Silbernitrat auf Dioxydiaminobenzolchlorhydrat vergleichbar sind, ein brauner Farbstoff ${ }^{1}$), der äußerlich dem Silbersalvarsan durchaus ähnelt. Es scheint also dadurch neben der Möglichkeit des Auftretens von kolloidem Silber eine zweite Ursache gegeben, weshalb beim Vermischen von Salvarsan- und Silbersälzlösung eine Reaktion unter Dunkelfärbung eintritt, und demnach könnte im Silbersalvarsannatrium eine Mischung von kolloidem Silber mit Oxydationsprodukten des Dioxydiaminoarsenobenzols vorliegen.

Es erwies sich nicht als leicht, diese Einwände durch Studium der Einwirkung von Silbersalzen auf Salvarsan aus dem Wege zu räumen, weil man hier nicht ohne weiteres zu eindeutigen Resultaten kommt: Wohl aber ließ sich das Wesen der Reaktion und damit auch die Einheitlichkeit des Reaktionsproduktes an Dichlorsalvarsan erkennen. Wir stellten fest, daß dieses mit Silbersalz nach dem eingangs mitgeteilten Schema reagiert. Es findet also ein Austausch der Wasserstoffionen der Salzsäure gegen je ein Silberion statt, und dadurch erfolgt Ausfällung. Letztere ist nicht quantitativ, vielmehr stellt sich ein Gleichgewichtszustand ein. In entsprechender Weise reagiert Dichlorsalvarsan auch mit Kupferchlorid, nur wird hier mehr Kupfer gebunden, als dem Silberniederschlag entspricht; es entsteht ein Niederschlag von ungefähr folgender Zusammensetzung

wobei also nicht nur Kupfersalz komplex gebunden, sondern auch die Wasserstoffatome der Phenolgruppen durch Kupfer ersetzt werden, letzteres allerdings geschieht nicht immer bis zur vollkommenen Absättigung der Acidität. Es scheint mit den Versuchsbedingungen zu sch wanken.

Die relative Durchsichtigkeit der beim Dichlorsalvarsan eintretenden Reaktionen gestattet den Schluß, daß die Einwirkung der Metallsalze auf gewöhnliches Salvarsan im wesentlichen nicht anders verläuft.

Das wurde durch die Untersuchung bestätigt. Allèrdings ist sie in diesem Falle schwieriger, weil analysierbare Niederschläge wegen ihrer größeren Löslichkeit nicht mit der gleichen Leichtigkeit entstehen wie beim Dichlorsalvarsan. Der Versuch mit Silbernitrat fiel darum negativ aus, dagegen führten die Anwendung von Fluorsilber und von Kupferchlorid zum Ziele. Dabei wird wegen des stärker hervortretenden

1) Aktiengesellschaft für Anilinfabrikation, D.R.P. 59964 (1890).

Einflusses der Aminogruppen ein Teil der Säure gebunden, die sich bei der Umsetzung mit dem Metallsalz abspaltet, so daß folgende Reaktionen stattfinden:

Wir versuchten, auch Nickel- und Quecksilbersalze in wässeriger Lösung darzustellen, bekamen aber im ersteren Falle weder mit Salvarsan noch mit dem chlorierten Produkt Niederschläge, und beim Quecksilber schied sich nach einiger Zeit das Metall aus.

Somit ist also folgendes festgestellt: Die Niederschläge aus wässe rigen Lösungen von Salvarsan und Dichlorsalvarsan einerseits, Silberund Kupfersalzen andererseits entsprechen nach gründlichem Auswaschen einem Reaktionsschema, an dessen einheitlichem Verlauf auf Grund der Analysen nicht zu zweifeln ist. Daraus folgt für das technische aus Silbersalz und Salvarsan entstehende Umsetzungsprodukt ebenfalls die Einheitlichkeit. Es ist nicht anzunehmen, daß diese durch die Ueberführung in das Natriumsalz gestört wird, denn hierbei werden die Phenolwasserstoffatome abgesättigt, ohne daß das Schwermetall abgespalten wird, was sich durch Ausfallen des betreffenden Hydroxydes oder Oxydes zu erkennen geben müßte. Das Metall bleibt also komplex gebunden.

Die Tatsache der komplexen Bindung der Metalle in allen Arsenometallverbindungen hat mit Recht Karrer (a. a. O.) schon hervorgehoben, ist aber dabei zu einem anderen Ergebnis gekommen als wir Während wir bei der Reaktion des Salvarsans und Dichlorsalvarsans mit Metallsalzen Umsetzungen unter vollkommener oder teilweiser Abspaltung der Säure nachgewiesen haben, findet Karrer eine glatte Addition der Komponenten, also z. B. bei Salvarsan und Silbernitrat:
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}+2 \mathrm{NO}_{3} \mathrm{Ag}=\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{NO}_{3} \mathrm{Ag} \cdot 2 \mathrm{HCl}$ Nach dieser Auffassung findet die von uns beobachtete Abspaltung von Säure hier nicht statt. Karrer belegt diese Formel und andere durch Analysen, deren Ergebnisse von den unsrigen abweichen. Wir erblicken darin keinen experimentellen Widerspruch, weil Karrer nicht wie wir in wässeriger, sondern in alkoholischer Lösung arbeitete, also unter Versuchsbedingungen, bei denen Komponenten festgehalten werden können, die durch Wasser abgespalten werden.

In einem anderen Punkte dagegen haben wir eine grundsätzlich abweichende Ansicht. Karrer hält es für erwiesen, daß die komplexe Bindung der Metallsalze allein durch Restaffinitäten der Arsenatome stattfindet, und gibt dafür die Formel

wo Me das betreffende Schwermetall und X das damit verbundene Nichtmetall bedeutet. In Verfolg der Ehrlichschen Feststellung ${ }^{1}$), wonach der dreiwertige Zustand des Arsens biologisch wesentlich ist, erscheint es nicht gleichyültig, ob die ungesättigten Restaffinitäten der Arsenatome durch Metallatome beschlagnahmt sind oder nicht. Die Prüfung der Karrerschen Annahme ist darum nicht nur rein chemisch, sondern auch chemotherapeutisch von Interesse. Wir weisen deshalb darauf hin, daß das bisher vorliegende experimentelle Material nicht ausreicht, um die Bindung des Metalles am Arsen als feststehend zu betrachten. Der von Karrer beigebrachte Beweis beschränkt sich auf z wei rein qualitative Beobachtungen: Arsenobenzol gibt in Pyridin gelöst mit Silbernitrat eine tiefe Braunfärbung und dann mit Alkohol-

1) Ehrlich, Berichte d. Deutsch. Chem. Ges., Bd. 42, 1909, S. 27. Ehritch und Hata, Die experimentelle Chemotherapie der Spirillosen.
Berlin 1910, S. 122.

Aether einen schwarzen Niederschlag, in dem eine Silbersalzadditionsverbindung des Arsenobenzols vorliegen soll; bei der Reduktion eines Gemisches von Phenylarsinsäure und Kupferchlorid mit unterphosphoriger Säure entsteht ein rotbraunes Pulver, in dem Karrer die Kupferverbindung des Arsenobenzols erblickt.

Wir haben in anderer Weise versucht, eine etwaige Addition von Metallsalzen an Arsenobenzol festzustellen, indem dieses in wässeriger Suspension mit Goldchlorid, Silbernitrat, Silberfluorid und Kupferchlorid geschüttelt wurde. Die Edelmetallsalze wirkten sofort ein, indem Phenylarsinsäure und die Farbe des durch Reduktion abgeschiedenen Metalles auftrat. Die Halogene dagegen wurden aus Goldchlorid und Silberfluorid, wenn überhaupt, dann nur in Spuren vom Arsenobenzol aufgenommen, wie die quantitative Bestimmung ergab, und eine Anlagerung von Kupfersalz trat auch nicht in Spuren ein. Was die Einwirkung des Silbernitrates angeht, so hatte der nicht oxydierte Teil des Arsenobenzols keinen Stickstoff aufgenommen.

Wir behandelten dann weiter nach Karrers Vorgang in Pyridin gelöste Arsenikalien mit Silbernitrat. Der Versuch wird beim Arsenobenzol dadurch erschwert, daß dieses in Pyridin nur schwer löslich ist, und daß beim nachherigen Ausfällen des angeblichen Metallsalzadditionsproduktes mit Alkohol und Aether derartig geringe Mengen erhalten wurden, daß sie zur Analyse selbst bei Anwendung von viel Arsenobenzol kaum ausreichten. Das ist offenbar auch der Grund, weshalb Karrer keine Analyse anführt. Besser êignet sich das Tetrabromarsenophenol, indessen erhielten wir hier analysierbare Niederschläge nur auf Zusatz eines solchen Ueberschusses von Silbersalz, daß Oxydation eintrat. Die Niederschläge bestanden aus Gemischen von ausgeschiedenem Silber und von Oxyphenylarsinsäure in Form eines schön krystallisierenden Pyridinsilbersalzes.

Wir halten es aus allen diesen Gründen für unwahrscheinlich, daß die bei Zusatz von Silbersalz zu Arsenobenzol in Pyridin auftretende braune Farbe etwas anderes als die des kolloiden Silbers ist. Das schließt natürlich die Möglichkeit nicht aus, daß die Restaffinitäten der Arsenatome sich Metallatomen gegenüber betätigen, sobald die Wasserstoffatome des Arsenobenzols durch Hydroxyl- oder Aminogruppen ersetzt sind. Ein Beweis dafür liegt aber einstweilen nicht vor; wir lassen daher diese schwierige molekulartheoretische Frage noch offen. Eine endgültige Klärung und damit auch die Bestimmung des Ortes im Salvarsanmolekül, an dem das Silber gebunden ist, wird erst durch das Studium einer größeren Anzahl von Arsenoverbindungen in ihrem Verhalten gegen Schwermetallsalze zu
erbringen sein.

Experimenteller Teil.

1. 3,3'-Diamino-4,4'-Dioxy-5,5'-Dichlor-arsenobenzol-Dichlorsilber.

Das in der Literatur noch nicht beschriebene Dichlorsalvarsan (3,3'-Diamino-4, 4^{\prime}-Dioxy- $5,5^{\prime}$-Dichlorarsenobenzoldichlorhydrat) wurde nach einer unveröffentlichten im Speyer-Hause befindlichen Vorschrift von Bertheim dargestellt:

70 g 3-Amino-, 4 -oxyphenylarsinsäure wurden mit 900 ccm Wasser und 234 ccm Salzsäure (spez. Gewicht 1,12) in Lösung gebracht und bei 5^{0} mit 100 ccm 3 -fach normalem Natriumnitrit diazotiert. Die schwerlösliche Diazoverbindung wurde abgesaugt, mit gesättigter Kochsalzlösung gewaschen, in 300 ccm Wasser suspendiert und portionenweise eingetragen in eine Lösung von 60 g Kuprochlorid in 812 ccm Salzsäure (spez. Gewicht 1,12). Das Gemisch wird auf dem Wasserbad erwärmt, bis die Stickstoffentwicklung beendet ist, und in eine heiße Lösung von 400 g Natriumhydroxyd in 1200 ccm Wasser eingetragen. Man kocht auf, saugt ab und säuert das Filtrat mit Salzsäure an, bis gerade Reaktion auf Kongopapier eintritt. Es wurden hierzu 210 ccm Salzsäure $(1,12)$ verbraucht. Die so erhaltene 3 -Chlor-4-oxyphenylarsinsäure wird bis zur Kristallisation eingedampft. Ausbeute 50 g . Aus der Mutterlauge lassen sich durch Eindampfen und Extrahieren mit Methylalkohol noch etwa 7 g gewinnen.

Nitrierung der 3-Chlor-4-oxyphenylarsinsäure: 101 g der Chloroxyphenylarsinsäure werden eingerührt in 300 ccm konzentrierte Schweefelsäure. Sodann wird bei einer Temperatur unter 0° eine Mischung von 26 ccm Salpetersäure $(1,4)$ und 26 ccm konzentrierter Schwefelsäure eingetropft. Nach 3 -stündigem Rühren gießt man das Säuregemisch in 1500 ccm Wasser. Die abgeschiedene 3-Chlor-4-oxy5 -nitro-phenylarsinsäure wird abgesaugt und mit gesättigter Kochsalzlösung und dann mit Wasser gewaschen. Ausbeute 92 g .

Reduktion zum Dichlorsalvarsan: 7,45 der 3-Chlor-4-oxy5 -nitro-phenylarsinsäure, gelöst in 150 ccm Wasser und $22,5 \mathrm{~cm} \frac{2}{\mathrm{n}}$ - Na tronlauge werden durch 1 -stündiges Verrühren mit $85,5 \mathrm{~g}$ Hydrosulfit und $17,1 \mathrm{~g}$ Magnesiumchlorid in 430 ccm Wasser bei 55° reduziert. Der entstandene Niederschlag von $3,3^{\prime}$-Diamino-4, 4^{\prime}-Dioxy-5, 5^{\prime} Dichlorarsenobenzol löst sich beim Schütteln mit 100 ccm Methylalkohol und $12,8 \mathrm{ccm}$ methylalkoholischer Salzsäure (enthaltend $1 / 20 \mathrm{GMol} . \mathrm{HCl}$) zum Dichlorhydrat. Dieses scheidet sich beim Eintropfen in 11 absoluten Aether in grünlich gelben Flocken aus. 4 g Ausbeute.
$0,2151 \mathrm{~g}$ Substanz gaben (nach Carius) $0,2052 \mathrm{~g} \mathrm{AgCl}$
0,3037"

$" \mathrm{C}_{12} \mathrm{H}_{10}{ }^{\prime} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{As}_{2}{ }_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{CH}{ }_{3} \mathrm{OH}(571,9)$

Ber. As 26,40, $\mathrm{Cl} 24,80$
Gef. " 25,90, " 23,79
23,59
Es wird also angenommen, daß die Substanz, ebenso wie Salvarsan ${ }^{1}$) Kristallalkohol enthält. Der etwa zu niedrige Chlorgehalt deutet auf geringfügige Abspaltung von Chlorwasserstoff, entsprechend der durch die Kernhalogene abgeschwächten Basizität.

Zur Darstellung des Dichlorsalvarsan-Chlorsilbers wurden $1,1 \mathrm{~g}$ Dichlorsalvarsan in 10 ccm Methylalkohol und dann in 20 ccm Wasser gelöst und unter Turbinieren mit $40 \mathrm{ccm} 1 / 20$-n-Silbernitratlösung ($=2 / 1000$ GMol. auf $2 / 1000$ GMol. Dichlorsalvarsan) versetzt. Die hellgelbe Lösung färbt sich dunkelgelb. Ein zuerst entstehender Niederschlag löst sich wieder auf. Erst bei Zugabe weiterer 40 ccm $1 / 20-\mathrm{n}$-Silbernitratlösung entsteht ein bleibender gelber Niederschlag. Die Filtration erwies sich wegen der gallertartigen Beschaffenheit als fast undurchführbar. Es wurde darum zentrifugiert, dekantiert und auf diese Weise 4 mal mit Wasser ausgewaschen. Die Ausbeute der im Vakuum getrockneten Substanz reichte gerade zu folgenden Analysen:

$$
\begin{aligned}
& 0,2772 \mathrm{~g} \text { Substanz gaben } 0,1147 \mathrm{~g} \mathrm{As}_{2} \mathrm{~S}_{5} \\
& 0,3022 \text { " " } \quad 0,2521 \text { " AgCl (Chlorbestimmung) } \\
& 0,1252 \text { " } \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}
\end{aligned}
$$

$\left.37,645 \mathrm{mg}^{2}\right)$ Substanz gaben $1,4 \mathrm{ccm} \mathrm{N}\left(708 \mathrm{~mm}, 17^{\circ}\right)$
$0,1226 \mathrm{~g} \quad " \quad 0,0479 \mathrm{~g} \mathrm{AgCl}$ (Silberbestimmung) $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{4} \mathrm{Ag}_{2}(721,6)$

Ber. As 20,78 Proz. Ag 29,90 Proz. Cl 19,66 Proz. N 3,88 Proz. Gef. " $\begin{array}{r}20,00 \\ 20,00\end{array}, "$ " 29,49 " ", 20,60 " " 4,08 "
Leichter als mit Silbernitrat bildet sich der Niederschlag von Dichlor-salvarsan-Chlorsilber bei Anwendung von Fluorsilber. Dies war zu erwarten, da in ersterem Falle die starke Salpetersäure, in letzterem Falle der schwächere Fluorwasserstoff frei wird.

[^3]3 g Dichlorsalvarsan wurden in 10 ccm Methylalkohol und dann in 60 ccm Wasser gelöst. Dazu kamen 25 ccm einer filtrierten Lösung von Fluorsilber, deren Gehalt titrimetrisch zu $1,35 \mathrm{~g}$ (entsprechend 2 Mol . AgFl auf 1 Mol . Salvarsan) ermittelt war. Es fiel sofort ein dicker braungelber Niederschlag aus. Um das Maximum der Fällung zu erreichen, wurden weitere 25 ccm der Fluorsilber zugegeben. Der Niederschlag wurde abgesaugt, mit Wasser durchgeknetet und so fort, bis nach dreimaliger Waschtng das ursprünglich stark saure Filtrat kaum noch sauer reagierte. Sodann erfolgte Waschung mit Alkohol und Aether, wobei die Substanz aufquoll und schwer filtrierbar wurde. Ausbeute nach 2-tägigem Trocknen im Vakuum 3 g .
$0,3387 \mathrm{~g}$ Substanz gaben mit Silbernitrat im Einschlußrohr $0,2302 \mathrm{~g}$ AgCl und $0,1334 \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$.
$0,4996 \mathrm{~g}$ Substanz gaben nach Binz ${ }^{1}$) mit Wasserstoffsuperoxyd, Salpetersäure und Hypochlorit aufgeschlossen $0,2042 \mathrm{~g} \mathrm{AgCl}$.
$0,2499 \mathrm{~g}$ Substanz gaben durch Veraschen und Ausziehen des Rückstandes mit Salpetersäure und mit Ammoniak 0,1016 g AgCl.

$$
\begin{aligned}
\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{4} \mathrm{Ag}_{2} & \text { Ber. As } 20,78, \mathrm{Ag} 29,90, \text { Cl } 19,60 \\
& \text { Gef. } \\
& 19,02, ~ " 30,76, ~ „ 16,81
\end{aligned}
$$

Das Atomverhältnis ist $\mathrm{As}: \mathrm{Cl}: \mathrm{Ag}=2: 3,74: 2,25$.
Die Analyse zeigt, daß dieselbe Substanz vorliegt wie bei der vorhergehenden Darstellung, nur in weniger reinem Zustande. Wie am Einschlußrohr bei der Chlor- und Arsenbestimmung zu ersehen war, haftete der Substanz noch etwas Fluorwasserstoff an, daher der zu geringe Chlorgehalt. Da zugleich der Arsengehalt zu niedrig ist, so dürfte die Substanz auch noch etwas Wasser oder Alkohol enthalten haben. Es ist das bei den hier beschriebenen kolloiden Niederschlägen fast immer der Fall, zumal da sie sich nicht bei erhöhter Temperatur trocknen lassen, da hierbei Oxydation eintritt. Der im Verhältnis zum Arsen und Chlor zu hohe Silbergehalt, der zu niedrige Chlorgehalt und die Anwesenheit von etwas Fluor deuten darauf, daß eine geringe Beimengung eines Silbersalzes etwa der Formel

im Niederschlag enthalten war. Wir werden bei der folgenden Substanz sehen, daß der Phenolwasserstoff unter Umständen leicht durch Metall ersetzt wird.

[^4]Arb. a. d. Inst. f. exp. Ther. u. d. Georg Speyer-Hause zu Frankfurt a. M. VIII.
2. Kupfersalz des 3,3-Diamino-4,4-Dioxy-5,5'-Dichlor-arsenobenzol-mono-Kupferchlorids.
2 g Dichlorsalvarsan wurden in 10 ccm Methylalkohol und dann in 40 ccm Wasser gelöst und unter Turbinieren langsam mit $1,25 \mathrm{~g}$ Kupfer chlorid, $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($=2 \mathrm{Mol}$. auf 1 Mol . Dichlorsalvarsan) in 135 ccm Wasser versetzt. Es entstand eine gelbbraune Gallerte, die sich allmählich in einen festen Niederschlag verwàndelte. Beim Absaugen erwies sich das Filtrat als stark sauer gegen Kongopapier, während die beiden unvermischten Lösungen vollkommen neutral reagierten. Hieran zeigte sich ebenso wie bei den vorher beschriebenen Präparaten die Abspaltung der Salzsäure durch den Reaktionsverlauf. Der Nieder schlag wurde von der Nutsche genommen, mit Wasser gründlich durchschlag wurde von der Nutsche genommen, mit Wasser gründlich durch-
geknetet, wiederum abgesaugt und wieder auf dieselbe Weise gewaschen, geknetet, wiederum abgesaugt und wieder auf dieselbe Weise gewaschen,
desgleichen zum Schluß mit Alkohol und Aether, wobei sich ein Teil löste. Ausbeute $0,9 \mathrm{~g} . \quad 0,3350 \mathrm{~g}$ Substanz gaben $0,1467 \mathrm{~g} \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$, $0,0746 \quad \mathrm{Cu}_{2} \mathrm{~S}$. Die Trennung des Arsens vom Kupfer geschah nach Jannasch und Seidel ${ }^{1}$). Das im Rückstand befindliche Hydrazinsalz wurde nach vollkommenem Eindampfen zur Trockne mit Salpetersäure zerstört. Darauf erfolgte Fällen des Kupfers mit Schwefelwasserstoff.
$0,3422 \mathrm{~g}$ Substanz (nach Carius) gaben $0,2711 \mathrm{~g} \mathrm{AgCl}$. Hieraus berechnet sich das Atomverhältnis:

As: $\mathrm{Cl}: \mathrm{Cu}=2: 3,91: 1,98$
entsprechend der Formel

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{As}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Cu} \cdot \mathrm{CuCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (703)
Ber. As 21,33 Proz., Cl 20,17 Proz., Cu 18,09 Proz. Gef. " 21,20 W 19,60 , 17,79
Die Einberechnung "des Wassers in "den "Molekülverband ist willkürlich. Es kann sich ebensowohl um mechanisch anhaftende Feuchtigkeit handeln, die bei den Substanzen der Salvarsanreihe schwer zu entfernen ist, da sie kolloid sind und nicht bei erhöhter Temperatur getrocknet werden dürfen.

Bei einer zweiten Darstellung des Präparates wurden 4 g Dichlorsalvarsan in 10 ccm Methylalkohol und dann in 80 ccm Wasser gelöst. Darein wurden $3,13 \mathrm{~g}$ Kupferchlorid in 100 ccm Wasser unter Turbinieren eingetropft. Der sofort entstehende Niederschlag wurde wie vorher gründlich gewaschen. $2,7 \mathrm{~g}$ Ausbeute.

1) Ber. d. Deutsch. Chem. Ges., Bd. 43, 1910, S. 1218.
$0,2911 \mathrm{~g}$ Substanz gaben $0,1374 \mathrm{~g} \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$ und $0,0576 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{~S}$. $0,7849 " \quad \geqslant \quad 0,1611, \mathrm{Cu}_{2} \mathrm{~S}$.
0,5616 " " (nach Carius mit Silbernitrat aufgeschlossen) $0,4892 \mathrm{~g} \mathrm{AgCl}$.
Gef. As 22,79, Cl 21,55, Cu 15, 80 Proz.
Atomverhältnis As : $\mathrm{Cl}: \mathrm{Cu}=2,0: 4,0: 1,67$.
Die gefundenen Werte für Arsen und Chlor liegen etwas über den für $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{As}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Cu} \cdot \mathrm{CuCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ berechneten, der für Kupfer wesentlich tiefer. Daraus folgt, daß die Substanz vielleicht etwas weniger Feuchtigkeit enthielt, als die zuerst dargestellte, daß aber jedenfalls die Ersetzung des Phenolwasserstoffs durch Kupfer nicht vollkommen eingetreten war. Es mag das daran gelegen haben, daß die Darstellung in fast der doppelten Konzentration stattgefunden hatte wie das erste Mal, so daß die durch die Reaktion abgespaltene Mineralsäure stärker zur Geltung kam und das vollkommene Ausfallen eines Phenol-Kupfersalzes verhinderte.

3. Einwirkung von Silbernitrat auf Salvarsan.

Weniger glatt als beim Dichlorsalvarsan verläuft die Umsetzung des Salvarsans mit Silbersalzen. Mit derjenigen Menge Silbernitrat, die beim Dichlorsalvarsan sofort einen Niederschlag gibt, zeigt das Salvarsan wohl die Rotbraunfärbung, welche auf das Eintreten der Reaktion deutet, aber der Niederschlag bleibt aus. Erst wenn man 4 Moleküle Silbersalz auf 1 Molekül Salvarsan hinzufügt, entsteht ein festes Reaktionsprodukt. Dieses ist aber keine einheitliche Substanz mehr, sondern enthält so viel Silber, daß man auf weitgehende Oxydation des Salvarsans schließen muß.

3 g Salvarsan wurden in 60 ccm Wasser gelöst und mit $2,15 \mathrm{~g}$ Silbernitrat in 50 ccm Wasser versetzt. Die Mischung färbte sich rotbraun, es entstand eine sehr geringe Menge eines braunen Niederschlages. Auf Zusatz von weiteren $2,15 \mathrm{~g}$ Silbernitrat erstarrte der Gefäßinhalt gallertartig. Nach gründlichem Auswaschen mit Wasser, dann mit Alkohol und Aether $3,5 \mathrm{~g}$ Ausbeute.

0,5194 Substanz nach Binz (a. a. O.) aufgeschlossen, gaben $0,4457 \mathrm{~g}$ AgCl und $0,1154 \mathrm{~g} \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$.

Zur Bestimmung des Chlors wurden 0,5862 g unter Zugabe von 1 g Silbernitrat mit Wasserstoffsuperoxyd und Wasser nach Binz aufgeschlossen. Das ausgeschiedene Chlorsilber betrug $0,2262 \mathrm{~g}$.

Gef. As 10,73, Ag 64,58, Cl 9,55 Proz.
Atomverhältnis $\mathrm{As}: \mathrm{Ag}: \mathrm{Cl}=2: 8,4: 3,8$.
Diese Zahlen stimmen auf keine Formel. Aehnliche Versuchsbedingungen, wie sie beim Dichlorsalvarsan zu einer einheitlichen Substanz führen, geben also beim Salvarsan eine weitgehende Zerstörung der Substanz.
4. 3,3'-Diamino-4,4'-Dioxy-arsenobenzol-Dichlorsilber.

Mit Fluorsilber entsteht schon nach Zusatz von 2 Mol . auf 1 Mol . Salvarsan ein Niederschlag, was auf die geringe Stärke der abgespaltenen Fluorwasserstoffsäure zurückzuführen ist. Oxydationsvorgänge treten hierbei nicht auf, so daß man ein einheitliches Reaktionsprodukt erhält: 6 g Salvarsan wurden in 120 ccm Wasser gelöst und unter Turbinieren langsam mit $3,12 \mathrm{~g}$ reinem Fluorsilber ($=2 \mathrm{Mol}$. auf 1 Mol . Salvarsan) in 450 ccm Wasser versetzt. Es entstand eine braunrote Lösung, dann bald eine Gallerte und in einer Kältemischung ein flockiger Niederschlag, der auf der Nutsche gewaschen und im Vakuum getrocknet wurde.
$0,2822 \mathrm{~g}$ Substanz (nach Binz mit $\mathrm{H}_{2} \mathrm{O}_{2}$ etc. aufgeschlossen) gaben $0,1132 \mathrm{~g} \mathrm{AgCl}$.
$0,3062 \mathrm{~g}$ Substanz gaben $0,1204 \mathrm{~g} \mathrm{AgCl}$.
$0,2754 \mathrm{~g}$ Substanz nach Carius gaben 0,1207 g $\mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$.
$0,2063 \mathrm{~g}$ wurden nach Warunis ${ }^{1}$) mit Natriumsuperoxyd verschmolzen, es erwies sich aber als notwendig, daß ausgefällte Magnesiumammoniumarseniat wieder zu lösen und zu fällen, da der zuerst erhaltene Niederschlag ein zu hohes Resultat ergab, wahrscheinlich wegen des Einschlusses von Salzen. Es fanden sich $0,0901 \mathrm{~g} \mathrm{~A}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$. $0,3345 \mathrm{~g}$ Substanz (nach Carius mit Silbernitrat) gaben $0,1343 \mathrm{~g}$
gCl . AgCl .

Da bei den Bestimmungen nach Carius eine deutliche Aetzung
Einschlußrohre zu erkennen war, wurde der Einschlußrohre zu erkennen war, wurde das Fluor bestimmt:

0,3020 Substanz wurden mit 10 g eines Gemisches von 2 Teilen Soda und 1 Teil Salpeter verschmolzen. Es wurde gelöst, vom Silberoxydrückstand abfiltriert, mit Salzsäure schwach angesäuert, sofort wieder ammoniakalisch gemacht und mit Magnesiamischung gefällt. Das Filtrat wurde schwach mit Salzsäure angesäuert, sofort mit Soda alkalisiert und in der Hitze mit überschüssigem Chlorcalcium gefällt. Aus dem entstandenen Niederschlag entfernte man nach dem Glühen das Calciumkarbonat mit Essigsäure. Es hinterblieben $0,0066 \mathrm{~g} \mathrm{CaFl}_{2}$.
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{As}_{2}, 2 \mathrm{AgCl} \cdot 4 \mathrm{H}_{2} \mathrm{O}(720,7)$

Ber. As 20,80 , $\mathrm{Ag} 29,94, \mathrm{Cl} \mathrm{9,84}, \mathrm{Fl}. \mathrm{-}$
Gef. " $21,16, \quad " 29,60, \quad 9,93, \quad 1,06$
$\begin{array}{lll}" 21,08, & " 29,60 \\ " & 29,52 .\end{array}$

1) Chemiker-Zeitung, 1912, S. 1205.

Die Menge des gefundenen Fluors ist so gering, daß sie als Verunreinigung betrachtet werden kann.

Bei einer zweiten Darstellung des Präparates wurde die Substanz nicht wie vorher auf der Nutsche gewaschen, sondern in einer Schale mit Wasser durchgeknetet, wieder abgesaugt und sofort, bis nach dreimaligem Waschen alle mechanisch anhaftende Säure verschwunden war. Ausbeute $6,9 \mathrm{~g}$.
$0,4427 \mathrm{~g}$ Substanz nach Carius aufgeschlossen gaben $0,1691 \mathrm{~g} \mathrm{AgCl}$ und $0,1858 \mathrm{~g} \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$.
$1,0335 \mathrm{~g}$ wurden mit 25 g Soda-Salpeter verschmolzen, und wie oben angegeben, aufgearbeitet. Es fanden sich $0,0479 \mathrm{~g} \mathrm{CaFl}_{2}$. Der beim Filtrieren der gelösten Schmelze verbliebene Silberrückstand wurde zur Lösung etwaigen Chlorsilbers mit Ammoniak, dann mit Salpetersäure ausgezogen. Beim Fällen ergaben sich $0,4328 \mathrm{~g} \mathrm{AgCl}$.

Gef. As 20,26, Ag 31,53, Cl 9,44, Fl 2,26 Proz.
Atomverhältnis $\mathrm{As}: \mathrm{Cl}: \mathrm{Ag}: \mathrm{Fl}=2: 1,97: 2,16: 0,44$.
Die Zahlen bestätigen zwar die Theorie, indessen war die Substanz weniger rein ausgefallen wie die zuerst dargestellte, auch haftete ihr etwas mehr Fluorwasserstoff an, entsprechend einer Beimengung einer Substanz von folgender Formel:

Noch deutlicher wird sich bei der nunmehr zu besprechenden Verbindung zeigen, daß das Salvarsan außer dem Metallsalz auch Säure binden kann, wie das schon Karrer gefunden hat.

5. 3,3'-Diamino-4,4'-Dioxy-arsenobenzol-mono-Kupferchloridmonochlorhydrat.

3 g Salvarsan in 60 ccm Wasser wurden mit 2 g Kupferchlorid $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 50 ccm Wasser versetzt. Die Lösung nahm eine gelbe Farbe an, blieb anfangs klar, erstarrte aber nach einigen Minuten zu einer Gallerte, die beim Verrühren zu einem langsam filtrierbaren Niederschlag wurde. Derselbe wurde gründlich mit Wasser ausgewaschen und dann auf Ton ins Hochvakuum gebracht. Ausbeute $2,3 \mathrm{~g}$.
$0,9208 \mathrm{~g}$ nach Binz mit Wasserstoffsuperoxyd, Salpetersäure und Hypochlorit aufgeschlossen, gaben $0,4504 \mathrm{~g} \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$ und $0,1220 \mathrm{~g} \mathrm{CuO}$. Kupfer und Arsen wurden nach Jannascir und Seidel (a. a. Q.) getrennt.
$0,3236 \mathrm{~g}$ gaben in derselben Weise $0,1599 \mathrm{~g} \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$.
$0,5952 \mathrm{~g}$ gaben in derselben Weise bei Gegenwart von 1 g Silber itrat aufgeschlossen $0,3930 \mathrm{~g} \mathrm{AgCl}$.
$0,4520 \mathrm{~g}$ gaben verascht, mit Königswasser gelöst und nach dem Filtrieren mit Kalilauge gefällt, $0,0564 \mathrm{~g} \mathrm{CuO}$. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{CuCl}_{2} \cdot \mathrm{HCl} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{NH}_{2} \cdot \mathrm{HCl} \cdot \mathrm{CuCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
Ber. As 23,61 Proz., Cu 10,11 Proz., Cl 16,75 Proz. Gef. " 23,61 " " 10,58 ", "16,33 23,86 ", " 9,97 ",
6. Arsenobenzol und Schwermetallsalze.

Wir stellten Arsenobenzol sowohl nach dem Verfahren von MiChaelis und C. Schulte ${ }^{1}$) durch Reduktion von Phenylarsinoxyd als auch aus Phenylarsinsäure dar. $20,2 \mathrm{~g}$ der letzteren in 250 ccm Wasser wurden 2 Stunden lang bei $40-50^{\circ}$ mit 250 ccm unterphosphoriger Säure vom spezifischen Gewicht 1,136 verrührt. Ausbeute $11,5 \mathrm{~g}$. Die Substanz zeigt, wie schon die genannten Chemiker angeben, die Neigung zu verharzen. Michaelis und Schulte beschreiben ihr Präparat als schwach gelb gefärbt und vom Schmelzpunkt 196°. Wir erhielten bei mehrfachen Darstellungen gelegentlich Produkte derselben Beschaffenheit, meist aber fast weiße, nur sehr schwach gelbe Präparate, die bei 208° schmolzen.

Einwirkung von Silbernitrat.
9 g Arsenobenzol wurden in 400 ccm Wasser suspendiert und mit einer Lösung von $5,1 \mathrm{~g}$ Silbernitrat in 300 ccm Wasser 6 Stunden lang geschüttelt. Schon in den ersten Sekunden zeigte sich Braunfärbung der Arsenobenzolkrystalle, und schließlich waren sie fast schwarz. Beim Abfiltrieren und Auswaschen verblieb ein Rückstand von 4,57 g. Die Analyse ergab keinen Stickstoff.
$0,5123 \mathrm{~g}$ Substanz nach Carius mit Salpetersäure aufgeschlossen gaben nach Zusatz von Salzsäure $0,2141 \mathrm{~g} \mathrm{AgCl}$.

Gef. Ag 31,35 Proz.
Aus dem stark sauer reagierenden Filtrat wurde das überschüssige Silber mit Salzsäure ausgefällt, worauf durch Eindampfen $1,8 \mathrm{~g}$ Phenylarsinsäure in wohlausgebildeten Krystallen vom Schmelzpunkt 158 bis 162° erhalten wurden.

1) Ber. d. Deutsch. Chem. Ges., Bd. 15, 1882, S. 1952

Ein großer Teil des Arsenobenzols war also oxydiert worden. Daher die Braunfärbung des übrigen durch ausgeschiedenes Silber. Durch Erwärmen mit verdünnter Salpetersäure kam das weiße Arsenobenzol wieder zum Vorschein.

Einwirkung von Goldchlorid.
$6,4 \mathrm{~g}$ Arsenobenzol wurden 5 Stunden lang mit $7,25 \mathrm{~g}$ technischem Goldchlorid in 120 ccm Wasser geschüttelt. Die Krystalle umkleideten sich gleich zu Anfang des Versuches mit Metall. Es hinterblieben nach dem Filtrieren und Auswaschen $7,35 \mathrm{~g}$ eines grauschwarzen Rückstandes. Beim Zerreiben zeigte sich, ebenso wie beim vorigen Versuche, daß, wie zu erwarten, die Metallschicht äußerlich drauf saß, während im Inneren das weiße Arsenobenzol zum Vorschein kam. $1,6456 \mathrm{~g}$ Substanz wurden ausgewaschen und zur Abspaltung etwa durch Addition aufgenommenen Goldchlorids mit 20 cm normaler Natronlauge 5 Minuten lang gekocht. Es wurde filtriert und ausgewaschen. Bei Zusatz von $3 \mathrm{ccm} 1 / 10$-Silbernitratlösung entstand eine schwache Trübung. Das Rücktitrieren mit Rhodanammonium ergab einen Verbrauch von $0,2 \mathrm{ccm} 1 / 10 \mathrm{AgNO}_{3}$. Beim Glühen des auf dem Filter gebliebenen Rückstandes ergaben sich $1,894 \mathrm{~g}$ Gold.

Gef. Cl 0,04 Proz., Au 45,0 Proz.
Auch hier also rührte die Färbung des Arsenobenzols weșentlich von ausgeschiedenem Metall her. Eine Addition von Chlorgold war, wenn überhaupt, nur in Spuren erfolgt.

Einwirkung von Kupferchlorid.
3 g Arsenobenzol wurden in 135 ccm Wasser suspendiert und mit $3,4 \mathrm{~g}$ Kupferchlorid in 285 ccm Wasser 5 Stunden geschüttelt. Es trat keine sichtbare Veränderung ein. Das Arsenobenzol blieb rein weiß. Eine Probe wurde abfiltriert, "gewaschen, verascht, mit Königswasser aufgenommen und mit Ferrocyankalium geprüft. Es zeigte sich keine Kupferreaktion.

7. 3,5, 3',5'-Tetrabrom-p-arsenobenzol und Silbernitrat.

Die Darstellung des Tetrabromarsenophenols geschah in Anlehnung an das D.R.P. 235430 der Farbwerke vorm. Meister Lucius \& Brüning ${ }^{1}$). Arsanilsäure wurde nach Bertheim ${ }^{2}$) in Phenolarsinsäure verwandelt. 57 g der letzteren in 570 ccm Wasser wurden vermischt mit einer auf 4° abgekühlten Lösung von Hypobromit, die aus 120 ccm $\frac{10}{\mathrm{n}}$-Natronlauge, 480 ccm Wasser und durch tropfenweise Zugabe von

[^5]2) Ber. d. Deutsch. Chem. Ges., Bd. 41, 1908, S. 1854.

20 ccm Brom unter Eiskühlung hergestellt war ${ }^{1}$). Die Patentschrift schreibt 12 -stündiges Stehen der Mischung vor. Wir erhielten bessere Ausbeute bei Abkürzung dieser Zeit auf 4 Stunden. Es wurde unter Eiskühlung mit 260 ccm Salzsäure vom spezifischen Gewicht 1,12 versetzt, abgesaugt, mit Wasser gewaschen, auf Ton getrocknet und \quad zur Entfernung des als Nebenprodukt entstandenen Tribromphenols mit Aether extrahiert. Die Ausbeute betrug $20,2 \mathrm{~g}$. Die Reduktion zum Tetrabromarsenophenol fand nach der Vorschrift des Patentes mit Hydrosulfit statt. Der so erhaltene gelbe Niederschlag wurde durch Lösen und Fällen mit Essigsäure gereinigt.

Eine Lösung von $16,7 \mathrm{~g}$ dieses Tetrabromarsenophenols in 325 ccm Pyridin wurde mit 11 Methylalkohol verdünnt und mit 664 ccm einer methylalkoholischen Silbernitratlösung, enthaltend 25,5 im Liter, versetzt. Es entspricht das 3,6 Molekülen Silbernitrat auf 1 Molekül Tetrabromarsenophenol, wobei $2,8 \mathrm{~g}$ eines braunen Niederschlages erhalten wurden. Bei einer kleineren Menge Silbersalz ist die Ausbeute minimal.
$0,4136 \mathrm{~g}$ Substanz: $0,1031 \mathrm{~g} \mathrm{CO}_{2}, 0,0301 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$,
0,5196 " (nach Carius): $0,1782 \mathrm{~g} \mathrm{AgBr}, 0,0762 \mathrm{~g} \mathrm{As}_{2} \mathrm{Mg}_{2} \mathrm{O}_{7}$, $0,5071 ", \quad " \quad 12,6 \mathrm{ccm}$ Stickstoff $\left(744 \mathrm{~mm}, 19{ }^{\circ}\right)$.

Gef. C $6,81, \mathrm{H} .0,81, \mathrm{Br} 14,59, \mathrm{~N} 2,84, \mathrm{As} 7,08, \mathrm{Ag} 58,90$ Proz.
Eine andere mit genau 4 Molekülen Silbernitrat auf 1 Molekül des Phenols dargestellte Substanz ergab: As 11,72 , Ag 38,88, N 2,26 Proz.

Die Zahlen sind ganz regellos und zeigen, daß unter denselben oder ähnlichen Bedingungen sehr verschiedene Reaktionsgemische erhalten werden, die durch weitgehende Oxydation des Phenols zustande kommen. Hierfür spricht der hohe Silbergehalt. Das metallische Silber läßt sich als Rückstand gewinnen, wenn man die Substanz wiederholt mit verdünntem Ammoniak auslaugt.

Nach Entfernen der braunen Substanz schied sich aus der alkoholischen Pyridinlösung des ersten Präparats auf Zusatz von 41 Wasser ein weißer krystallinischer Niederschlag aus. Ausbeute 8,5. Schmelzpunkt $157-158^{\circ}$ unter Zersetzung. Die Analysen stimmen auf ein Pyridin-Silbersalz der Dibromphenolarsinsäure

1) Grambe, Ber. d. Deutsch. Chem. Ges., Bd. 35, 1912, S. 2753 Berthita, ebenda, Bd. 43, 1910, S. 529.
$0,4171 \mathrm{~g}$ Substanz: $0,3021 \mathrm{~g} \mathrm{CO}_{2}, 0,0658 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$,
0,3181 " $\quad 0,2244{ }^{\prime}, \mathrm{AgBr}$,
0,3330"
0,4156 " \quad " $\quad 10,4 \mathrm{ccm}{ }^{\prime} "(170,754 \mathrm{~mm})$,
$0,2152 " \quad>\quad 5,8 \mathrm{ccm} \mathrm{N}\left(15^{\circ}, 744 \mathrm{~mm}\right)$,
$0,2422, \quad " \quad 0,0837 \mathrm{~g} \mathrm{AgCl}, 0,0716 \mathrm{As}_{2} \mathrm{O}_{7} \mathrm{Mg}_{2}$.
$34,610 \mathrm{mg} \quad, \quad 1,1 \mathrm{ccm} \mathrm{N}\left(710 \mathrm{~mm}, 16^{\circ}\right)$,
$19,750 \Rightarrow \quad \geqslant \quad 17,170 \mathrm{mg} \mathrm{CO} 2,3,080 \mathrm{mg} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{AsNBr}_{2} \mathrm{O}_{4} \mathrm{Ag}$ Ber. C 24,17 , H 1,66 , N 2,57 , Gef. , 23,72, , 1,74, , 3,50 3,50
2,92 3,13
Ber. Ag 19,77, As 13,73 , $\operatorname{Br} 29,24$ Gef. „ 19,85 , " 14,27 , „ 30,02

Kolloidchemische Studien in der Salvarsanreihe
Zur Kenntnis des Silbersalvarsannatriums
(3. Mitteilung)

Von
Dr. Hugo Bauer
Mit 1 Abbildung im Text

Im Verlaufe biologischer noch im Gange befindlicher Untersuchungen, die W. Kolle über das Verhalten kolloider Substanzen im Organismus anstellte, hatte sich die Notwendigkeit ergeben, den chemisch-physikalischen Zustand wässeriger Lösungen von Salvarsan und verwandten Substanzen klarzustellen und eine Entscheidung zu treffen, ob in dieser Reihe Krystalloide oder Kolloide vorliegen. Dem Chemiker, der auf dem Gebiete der Arsenoverbindungen arbeitet, fällt die unerquickliche Form, in der diese Verbindungen sich abscheiden oder lösen, die gelatinöse Beschaffenheit der Niederschläge, die dem Filtrieren und Auswaschen große Schwierigkeiten bereiten, oft in unangenehmer Weise auf. Diese Neigung der Arsenoverbindungen, in kolloider Form aufzutreten, ließ es auch vom chemischen Standpunkt aus wünschenswert erscheinen, den Lösungszustand dieser Verbindungen aufzuklären.

Besonders wichtig erschien die Untersuchung des Silbersalvarsans ${ }^{1}$), das in Form seines Natriumsalzes für medizinische Zwecke zur Anwendung gelangt, und dessen Lösungsfarbe mit der Farbe kolloider Silberlösungen vollständig übereinstimmt.

Versetzt man Salvarsan-dichlorhydrat mit einem Molekül der Lösung eines Silbersalzes, so erhält man eine orangefarbene Lösung. Bei Zusatz von Alkali fällt zunächst die freie Silbersalvarsanverbindung in dunkelgelben Flocken aus, die sich im Ueberschuß des Alkalis mit intensiv dunkelbrauner Farbe lösen. Nach der Auffassung von Ehrlich und Karrer ${ }^{2}$) stellt das Silbersalvarsan eine komplexe Verbindung von Salvarsan und Silbersalz dar, bei der die Nebenvalenzen des Silbers durch Nebenvalenzen der Arsenogruppe gebunden sein sollen. Nach den Ergebnissen der vorhergehenden Abhandlung ${ }^{3}$) er-

[^6]scheint es fraglich, ob die Komplexbindung an der Arsenogruppe stattfindet, doch ist diese Frage für die vorliegende Untersuchung unerheblich.

Das in Lösung intensiv dunkelbraune Natriumsalz des Silbersalvarsans muß als ein Salvarsannatrium aufgefaßt werden, das Silberhydroxyd oder Silberoxyd komplex gebunden enthält. Die ganz intensive Farbvertiefung, die beim Alkalisieren des Silbersalvarsans auftritt, ist so auffallend, daß sie mit einer Salzbildung allein nicht erklärt werden kann. In der Tat ist mit dem Silbersalvarsan beim Alkalischmachen eine Veränderung vor sich gegangen, die sich chemisch nachweisen läßt, ohne daß jedoch ihre Aufklärung bis jetzt gelungen wäre. Säuert man Silbersalvarsannatrium mit verdünnter Salzsäure an, so erhält man nicht die ursprüngliche orangefarbene Lösung, sondern eine tief dunkelbraune Lösung vom Farbton des Natriumsalzes, die nach mehrtägigem Stehen einen braunen Niederschlag absetzt, dessen Untersuchung noch aussteht. Eine mit verdünnter Salzsäure angesäuerte Silber-Salvarsandichlorhydratlösung, die nicht alkalisiert war, behält ihren orangen Farbton bei, ohne einen Niederschlag abzusetzen.

Mit Recht konnte der Einwand gemacht werden, daß die dunkle Farbe des Silbersalvarsannatriums durch kolloid gelöstes Silberoxyd, vielleicht sogar durch kolloides Silber bedingt sei, das durch Reduktion auf Kosten der Arsenogruppe entstanden sein konnte. Die Frage, ob Silber oder Silberoxyd in kolloider Form im Silbersalvarsannatrium enthalten sei, suchte ich auf kolloidchemischem Wege zu entscheiden

Als einfachste Untersuchungsmethode bot sich zunächst das klassische Verfahren Grahams ${ }^{1}$), die Dialyse. Läßt man Salvarsan, erstens als Dichlorhydrat, zweitens als Dinatriumsalz, wie es in der für Injektionszwecke benutzten Lösung enthalten ist, drittens Silbersalvarsannatrium durch Diffusionshülsen von Schleicher und Schüll gegen Wasser diffundieren, so beobachtet man, daß nach 12 Stunden Dichlorhydrat fast gar nicht, daß Dinatriumsalz in geringer Menge diffundiert ist, während das Silbersalvarsannátrium schon nach 1 Stunde in beträchtlicher Menge diffundiert. Verwendet man statt der Dialysierhülsen aus Pergamentpapier Kollodiumsäckchen, die nach Bilitz ${ }^{2}$) hergestellt wurden, so verläuft die Dialyse rascher, die Erscheinungen sind im übrigen gleich.

Bei diesen Versuchen ist es notwendig, die Kohlensäure der Luft auszuschließen, da die Natriumsalze durch Kohlensäure zersetzt und in die freien Arsenoverbindungen übergeführt werden, die unlöslich ausfallen. Auch bei Beobachtung dieser Sicherheitsmaßnahme tritt bei den Natriumsalzen nach einigen Tagen Fällung ein, die durch allmählich eintretende hydrolytische Spaltung der Natriumsalze hervorgerufen wird. Die hydrolytische Abspaltung des Alkalis läßt sich bei den

1) Philos. Transactions, 1861, p. 183. - Liebigs Ann. d. Chem., Bd. $121, \mathrm{~S} .1$.
2) Zoitschr. f. physikal. Chem., Bd. 68, 1910, S. 365.
weiter unten beschriebenen Diffusionsversuchen in Gelatine schön beobachten. Die Dialysiermethode gibt also wegen der Empfindlichkeit der Natriumarsenoverbindungen und der langen Dauer der Versuche (die Dialyse dauert mehrere Tage) keine zuverlässigen Ergebnisse. Immerhin läßt sich schon aus diesen Versuchen folgern, daß die Arsenoverbindungen sich nicht wie echte Kolloide verhalten, wie ein Vergleich mit kolloider Silberlösung zeigt, die auch nicht spurenweise diffundiert, daß sie aber andererseits bedeutend langsamer als Krystalloide diffundieren. Für das Silbersalvarsannatrium speziell ist durch den Dialysierversuch nachgewiesen, daß die dunkle Farbenichtdurch kolloides Silber oder Silberoxyd hervorgerufen sein kann.

Mit diesem Ergebnis stimmt überein, daß die Lösungen von Silbersalvarsannatrium kein Tyndallphänomen zeigen. Betrachtet man eine Lösung von Silbersalvarsannatrium und eine kolloide Silberlösung von gleicher Farbintensität in einem Lichtkegel, so erscheint die Silbersalvarsannatriumlösung optisch leer, die Silberlösung stark trübe. Die Beobachtung im Ultramikroskop, das Herr Prof. Bechiold in liebenswürdiger Weise zur Verfügung stellte, bestätigt diese Erscheinung. Im Gesichtsfeld des Ultramikroskops erscheint die kolloide Silberlösung von äußerst zahlreichen, lebhaft beweglichen, in den verschiedensten Farben schillernden Teilchen erfüllt, während die Lösung des Silbersalvarsannatriums nur einzelne, vollkommen weiße und nur träge bewegliche Teilchen erkennen läßt, die nur von Spuren kolloiden Silbers oder wahrscheinlich einer kolloiden Silberverbindung herrühren können.

Wenn die Beobachtung im Ultramikroskop nun auch ergibt, daß das Silbersalvarsannatrium außer den eben genannten Spuren kein kolloides Silber oder Silberoxyd enthält, so darf doch daraus nicht gefolgert werden, daß das Silbersalvarsannatrium überhaupt nicht kolloid sei. Es sind viele kolloide Substanzen bekannt, die im Ultramikroskop keine Teilchen erkennen lassen, weil entweder diese Teilchen zu klein sind, oder aber infolge der Lichtbrechungsverhältnisse dem Auge nicht sichtbar werden. Zu diesen Stoffen gehören z. B. die Eiweißkörper.

Hier boten sich nun zwei weitere Methoden, die von Bechiold ${ }^{1}$) zuerst eingeführten Methoden der Ultrafiltration und der Diffusion in Gallerten ${ }^{2}$), von denen jede ihre besonderen Vorzüge besitzt. Die Becheoldsche Ultrafiltration erlaubt durch Filtration durch ein Kollodiumfilter unter Druck kolloide Substanzen von ihrem Dispersionsmittel in kurzer Zeit zu trennen. Die Nachteile der Dialysiermethode, die durch zu lange Versuchsdauer und auftretende Hydrolyse entstehen, sind hier vermieden. Von besonderer Bedeutung ist es aber, daß man

1) Zeitschr. f. physikal. Chemie, Bd. 60, 1907, S. 257.
S. 2) H. Bechiold, Die Kolloide in Biologie und Medizin, 2. Auf.,
hier durch Verwendung von Filtern von beliebig wählbarer Porengröße die Teilchengröße kolloider Substanzen annähernd feststellen kann.

Der Apparat für die Ultrafiltration wurde von Herrn Prof. BectHOLD freundlichst überlassen. Für die Ultrafiltration wurde ein etwa 6-proz. Eisessig-Kollodiumfilter verwendet. Eine Prüfung mit Hämoglobinlösung ergab, daß diese vollständig zurückgehalten wurde, ja sogar gegen Lackmustinktur erwies sich ein derartiges Filter als undurchlässig. Nach der von Bechiold aufgestellten Tabelle hält also unser Filter auch sehr kleine kolloide Teilchen zurück und die Teilchen der filtrierenden Lösungen sind wahrscheinlich kleiner als die der Albumosen vom Molekulargewicht 2400. Zum Vergleich sei hier aus der Bechioldschen Tabelle angeführt, daß kolloide Goldlösung Nr. 4 (Zsigmondy) eine Teilchengröße von $40 \mu \mu$, kolloide Goldlösung Nr. 0 eine Teilchengröße von etwa 1-4 $\mu \mu$ aufweist. Hämoglobin (Molekulargewicht ca. 16000) hat in 1-proz. Lösung etwa die gleiche Teilchengröße wie Goldlösung Nr. 0.

Geprüft wurden folgende Substanzen:
Salvarsandichlorhydrat,
Salvarsan alkalisiert,
Salvarsannatrium (Höchst),
Neosalvarsan,
Sulfoxylat (Präparat 1495),
Silbersalvarsannatrium.
Hierbei zeigte es sich, daß die Teilchengröße derselben Substanz derartig variieren kann, daß die kleinen Teilchen das Ultrafilter passieren, während die größeren zurückgehalten werden. Dies ist z. B. beim Salvarsandichlorhydrat der Fall. Bei der alkalischen Salvarsanlösung schwankt die Teilchengröße nach der Art der Darstellung. Die Lösung des fabrikatorisch hergestellten Salvarsannatriums enthält keine kolloiden Teilchen und passiert das Ultrafilter ohne Rückstand. Stellt man sich dagegen eine alkalische Salvarsanlösung her, wie sie in der medizinischen Praxis verwendet wird, indem man Salvarsandichlorhydrat in Wasser löst, und die zur Bildung des Dinatriumsalzes notwendige Menge 15 -proz. Natronlauge auf einmal zusetzt, so wird ein Teil der Lösung auf dem Ultrafilter zurückgehalten. Die frisch hergestellte alkalische Salvarsanlösung enthält also ein Gemisch von großen und kleinen Teilchen. Die Frage drängt sich auf, ob die kolloiden Teilchen der Lösung des Dinatriumsalvarsans bei längerem Stehen verschwinden oder sich vermehren. Bewahrt man die nichtkolloide Lösung des fabrikatorisch hergestellten Natriumsalvarsans 2 Tage unter Luftabschluß auf, so tritt kein Wachsen der Teilchen ein, denn bei der Ultrafiltration hinterbleibt kein Rückstand. Anders verhält sich dagegen eine alkalisierte Lösung des Salvarsandichlorhydrates, wie der folgende Versuch zeigt.

Eine alkalisierte Salvarsanlösung wurde in 2 Teile geteilt, die eine Hälfte wurde sofort ultrafiltriert, die andere erst nach zweitägiger Aufbewahrung unter Luftabschluß. Die Stehlösung hinterließ einen bedeutend geringeren Rückstand. Bei längerem Stehen der alkalisierten Salvarsanlösungen nehmen die kolloiden Teilchen also allmählich an Größe ab, ein Vorgang, der kolloidchemisch als Peptisation bezeichnet wird. Auch diese Versuche zeigen, daß die Arsenoverbindungen eine Uebergangsstellung zwischen kolloiden und krystalloiden Substanzen einnehmen.

Unterwirft man eine Lösung von Silbersalvarsannatrium der Ultrafiltration, dann erhält man ein Filtrat von unverändert tief dunkelbrauner Farbe. Dieser Versuch ist ein entscheidender Beweis dafür, daß die dunkle Farbe des Silbersalvarsannatriums nicht durch kolloides Silber oder Silberoxyd hervorgerufen sein kann, sondern einer komplexen Bindung des Silbers seine Entstehung verdankt. Auch auf rein chemischem Wege läßt sich zeigen, daß das Silberoxyd im Silbersalvarsannatrium in komplexer Bindung, nicht aber als mechanisch beigemengtes Kolloid enthalten sein muß.

Kolloides, nach Paal ${ }^{1}$) hergestelltes Silberoxyd bzw. Hydroxyd reagiert mit Hydrazinhydrat unter Entwicklung von Stickstoff und Bildung von kolloidem Silber und wird durch Ammoniak entfärbt. Silbersalvarsannatrium bleibt mit beiden Reagentien unverändert. Weiterhin ergibt sich, daß kolloides Silberhydroxyd oder Oxyd neben alkalischer Salvarsanlösung gar nicht existenzfähig ist. Versetzt man nämlich eine alkalisierte Salvarsanlösung mit nach PaAL gewonnenem farblosen kolloiden Silberhydroxyd, so tritt sofort die charakteristische tief dunkelbraune Färbung des Silbersalvarsannatriums auf, während die Reaktionen mit Ammoniak und Hydrazin ausbleiben. Das Silberoxyd wird also chemisch komplex gebunden.

Während die Diffusionsversuche - wie weiter unten gezeigt wird - einen Unterschied zwischen der Diffusionsgeschwindigkeit und mithin der Teilchengröße des Salvarsandichlorhydrates und des Salvarsandinatriumsalzes kaum erkennen lassen, ergibt die Ultrafiltration ein abweichendes Resultat. Der größte Teil des gelösten Salvarsandichlorhydrates wird durch das Ultrafilter zurückgehalten. Es zeigte sich, daß der Diffusionsversuch nur über die Diffusionsgeschwindigkeit der kleinsten Teilchen, die überhaupt in der Lösung vorhanden sind, Aufschluß gab, nicht aber über die größeren kolloiden Teilchen. Die Ultrafiltration bringt uns hier einen überraschenden Unterschied zwischen saurer und alkalischer Salvarsanlösung zur Kenntnis. Man wird an die koagulierende Wirkung erinnert, die Säuren auf kolloide Substanzen ausüben.

1) Ber. d. Deutsch. Chem. Ges., Bd. 35, 1902, S. 2206. Arb. a. d. Inst. f. exp. Ther. u. d. Georg Speyer-Hause zu Frankfurt a. M. VIII

Neosalvarsan, das nicht dissoziierte Natriumsalz der Salvarsan-Formaldehyd-Sulfoxylsäure, hinterläßt bei der Ultrafiltration keinen Rückstand. Es ist jedoch, wie der Diffusionsversuch zeigt, auch nicht krystalloid, obwohl es keine kolloiden Teilchen enthält, sondern nimmt, wie die bisher untersuchten Arsenoverbindungen, eine Mittelstellung ein.

Das Sulfoxylat (Präparat 1495) steht dagegen den Kolloiden bedeutend näher. Der Diffusionsversuch ergibt, daß es von den untersuchten Arsenoverbindungen die am langsamsten diffundierende Substanz ist. Bei der Ultrafiltration hinterbleibt ein beträchtlicher Rückstand, der darauf deutet, daß das Sulfoxylat sich größtenteils als Kolloid in Lösung befindet.

Die Ergebnisse der Ultrafiltration bestätigen also, daß wir uns bei den Arsenoverbindungen auf dem Grenzgebiete zwischen Krystalloiden und kolloiden Substanzen bewegen.

Die Diffusion in Gallerten bietet den Vorteil, daß man bei den in unserem Falle zu untersuchenden Substanzen die Diffusionsgeschwindigkeit und das verschiedene Verhalten der Substanzen dem Auge sichtbar machen kann, teils schon durch die Eigenfarbe der Lösung, besonders aber durch Farbreaktionen.

Die Diffusionsversuche wurden nach Bechiold ${ }^{1}$) in folgender Weise ausgeführt: Reagenzgläser von etwa 23 cm Länge und 18 mm Weite wurden ungefähr 10 cm hoch mit 3-proz. wässeriger Gelatinelösung gefüllt. Die abgewogene Gelatine war 2 Tage in einem Mullbeutel gewässert und mit Sodalösung neutralisiert. Die im Reagenzrohr erstarrte Gelatinelösung wurde mit der zu prüfenden Flüssigkeit überschichtet, und das bis zum Rande gefüllte Reagenzglas luftfrei mit einem Kork verschlossen, der mit Paraffin überzogen wurde. Die Röhre wurde 14 Tage im Eisschrank aufbewahrt und dann untersucht. Bei gefärbten Lösungen wurde durch Anlegen eines Maßstabes an den Meniscus der Gelatinelösung gemessen, wie tief sie eingedrungen waren. Hierbei läßt sich nur mäßige Genauigkeit erzielen, da das Ende der gefärbten Zone stets verwaschen ist. Bei ungefärbten Lösungen muß durch Ueberführung in eine gefärbte Verbindúng die Diffusionstiefe festgelegt werden. Die Farbreaktionen kann man in der Weise ausführen, daß man die Gelatine in Scheibchen gleicher Dicke zerschneidet und durch Betupfen mit einer passenden Reagenzlösung feststellt, wie weit die Gelatine von der zu prüfenden Substanz durchdrungen ist. Das folgende Verfahren erlaubt eine anschaulichere Darstellung. Die Substanzlösungen wurden von der Gelatine abgegossen, das Reagenzrohr mehrmals mit destilliertem Wasser ausgespült und durch kurzes Eintauchen in heißes Wasser die Gelatine so weit gelockert, daß sie beim Kippen des Reagenzglases herausrutschte. Die Gelatinemasse

1) H. Веснноцd 1. с.
wurde auf Filtrierpapier aufgefangen, abgetupft und mit einem Streifen Filtrierpapier bedeckt, der mit einer Reagenzlösung getränkt war, die mit den zu untersuchenden Verbindungen eine intensive Färbung gab. Als solche wurden z. B. Dimethylamino-benzaldehyd oder ammoniakalische Silberlösung verwendet. Nach $1 / 2-1$ Minute hatte sich ein deutlicher Abdruck gebildet, der photographiert wurde. Auf diese Weise sind die beigefügten Abbildungen entstanden. Zum Vergleich wurde als kolloide Substanz kolloides Silber (Collargol), als krystalloide Substanzen Silbernitrat und arsanilsaures Natrium (Atoxyl) gewählt Die Substanzen wurden in 2-proz. Lösung verwendet, die Versuchsdauer betrug 14 Tage. Nach dieser Zeit war Collargol überhaupt nicht diffundiert, die Krystalloide hatten den Boden des Reagenzglases erreicht, die Arsenoverbindungen hielten die Mitte. Man kann diese Substanzen nach dem Bilde, das die Diffusionsversuche geben, als halbkolloid (semikolloid) bezeichnen. Man muß sich unter diesem Ausdruck vorstellen, daß die Teilchengröße dieser Substanzen in jenem Grenzgebiete liegt, in dem der Uebergang von Kolloiden zu krystalloiden Substanzen stattfindet.

Nach den theoretischen Untersuchungen von W. Sutherland ${ }^{1}$), A. Einstein ${ }^{2}$) und M. v. Smoluchowski ${ }^{\text {a }}$) ist der Diffusionskoeffizient dem Teilchenradius umgekehrt proportional. Will man die Resultate der Diffusionsversuche vergleichen, so muß man voraussetzen, daß alle Teilchen ein und derselben Substanz gleiche Größe besitzen. Trifft diese Annahme nicht zu (nach den Ergebnissen der Ultrafiltration können verschiedene Teilchengrößen bei derselben Substanz gleichzeitig vorhanden, sein), so geben unsere Dialysierversuche nur ein Bild von dem Verhalten der am raschesten diffundierenden, also kleinsten vorhandenen Teilchen. Gruppiert man also die Arsenoverbindungen und im Vergleich dazu Collargol und Silbernitrat in der Reihenfolge ihrer Diffusionsgeschwindigkeit, so erhält man folgende Reihe, die mit den langsamer diffundierenden beginnt:

1) Collargol,
2) Sulfoxylat (Präparat 1495),
3) Silbersalvarsannatrium,
4) Neosalvarsan,
5) Salvarsan-dichlorhydrat,
6) Salvarsan alkalisiert,
7) Salvarsannatrium (Höchst),
8) Atoxyl,
9) Silbernitrat.
10) Philos. Magaz. Vol. (6) 9, 1905, p. 781

Bd. 2) Ann. Physik, Bd. 17, 1905, S. 549. - Zeitschr. f. Elektrochemie 14, 1908, S. 235
3) Ann. Physik, Bd. 17, 1906, S. 756.

Etwa auftretende Hydrolyse läßt sich schön beobachten, indem man der Gelatine Lackmustinktur zusetzt. Es ist dann deutlich an dem eintretenden Farbenumschlag zu erkennen, ob eine Substanz durch Wasserr unter Abspaltung von Säure oder Alkali zerlegt wird. Die Säure oder das Alkali eilt hierbei der Substanz infolge größerer Diffusionsgesch windigkeit voraus. Die Hydrolyse der Natriumsalze läßt sich etwas zurückdrängen, wenn man der Gelatine Sodalösung zusetzt. Die auf den Abbildungen mit dem Index b versehenen Ziffern bezeichnen Substanzen, die in eine Gelatine mit 0,03 Proz. Soda, die mit dem Index c versehenen solche, die in eine Gelatine mit 0,5 Proz. Soda diffundiert sind. Aus den Figuren ergibt sich deutlich, daß die am stärksten alkalische Gelatine das Silbersalvarsannatrium (Fig. 3 c) und Salvarsannatrium (Fig. 6 c und 7 c) am weitesten diffundieren läßt, während die schwach alkalische Gelatine (Fig. 3b, 6 b und 7 b) die Mitte hält.

Die Diffusionsversuche in Gelatine geben uns in anschaulicher Weise ein Bild davon, wie wir uns das Verhalten der untersuchten Substanzen im Organismus vorstellen können. Wir müssen annehmen, daß im Organismus die Natriumsalze des Salvarsans hydrolysiert werden und dadurch in diee freien Verbindungen übergehen, die sich durch die Anwesenheit von Eiweißkörpern, die als Schutzkolloide wirken, zunächst in kolloider Form abscheiden.

Die vorliegende Untersuchung führt also zu dem Ergebnis, daß Salvarsan und die verwandten Verbindungen als halbkolloid zu betrachten sind und eine Teilchengröße aufweisen, die im Grenzgebiet zwischen kolloiden und krystalloiden Substanzen liegt. Für das Silbersalvarsannatrium insbesondere ist nachgewiesen, daß es als ein chemisch einheitlicher Körper aufzufassen ist, der das Silber in komplexer Bindung und nicht als mechanisch beigemengtes Kolloid enthält. Die Diffusionsversuche machen es wahrscheinlich, daß diese halbkolloiden Arsenoverbindungen im Organismus als echte Kolloide auftreten können.

Versuche
über färberische Differenzierung von Bakterien

Von
N. Bezssonof

Auf Grund verschiedener Beobachtungen, die auf das Zustandekommen kolorierter chemischer Verbindungen zwischen Teerfarbstoffen und Eiweißkörpern hindeuteten ${ }^{1}$), wurde von Brailsford Robertson ${ }^{2}$) die Vermutung geäußert, daß es sich auch bei den histologischen Färbungen um eine Reaktion echter chemischer Affinitäten zwischen dem schon fixierten Eiweiß der Gewebe einerseits und Farbstoffen andererseits handle.

In der letzten Zeit hat Hollande ${ }^{3}$) über Verbindungen von sauren Farbstoffen mit albuminoiden Substanzen in Form von kolorierten Acidoalbuminen berichtet. Derartige Acidoalbuminoide waren durch Erhitzen auf 100°, ja selbst auf 120° (20 Minuten im Autoklaven) nicht zur Koagulation zu bringen. Wenn man eine lösliche Albuminsubstanz in einem bestimmten Verhältnis mit sauren Farbstoffen mischt und erhitzt, erhält man, wie Hollande mitteilt, ein durchsichtiges Gel, das bis auf 120° erhitzt werden kann, ohne daß es eine Veränderung erleidet. Zum Schluß bemerkt auch Hollande, daß die histologischen Färbungen (Eosinophilie, Acidophilie) als physikalisch-chemische Reaktionen und nicht nur als reine physikalische Phänomene aufzufassen sind.

Andererseits ist es eine bekannte Tatsache, daß gute spezifische Plasmafärbungen sich nur in wenigen Ausnahmefällen erzielen lassen. Im allgemeinen geben die das Plasma diffus färbenden sauren Farbstoffe nicht allein bei der Vitalfärbung, sondern auch bei der Färbung von fixiertem Material nur eine schwache, ganz uncharakteristische Tingierung. Die Ursachen dieser schwachen Wirkung der sauren Farbstoffe sind der

[^7]Gegenstand vieler eingehender Untersuchungen gewesen ${ }^{1}$). Die Photographen sind bei der Färbung der Gelatinehäutchen der photographischen Platten auf ähnliche Schwierigkeiten gestoßen; nach BaUtree ${ }^{2}$) war die zu erzielende Färbung stets zu blaß. Wenn man aber, wie Bautree angibt, nicht einen einzigen Farbstoff, sondern deren zwei oder gar drei nacheinander anwendet, färbt sich das Gelatinehäutchen sehr gut, obwohl jeder bei einer derartigen Serienfärbung verwendete Farbstoff an sich nur eine blasse Tönung "gibt. Vor der Färbung hat Bautree die Gelatine durch eine 1-proz. Kaliumbichromatlösung sensibilisiert.

Die Anwendung von Hitze bei Färbungen ist, besonders in der bakteriologischen Technik, schon lange üblich; dasselbe gilt von der serienweisen Anwendung der Farbstoffe. Jedoch lag es in Anbetracht der Ergebnisse von Hollande und Bautree nahe, bei der Bakterienfärbung systematisch erstens die Einwirkung der Erhitzung sowohl bei der Färbung als auch beim Abspülen (als Differenzierungsmittel) zu beobachten, weiterhin aber den Versuch zu machen, durch serienweise Anwendung von 2-3 Farbstoffen in bestimmter Reihenfolge zu einem auf der Affinität der artspezifischen Eiweißkörper zu den Farbstoffen beruhenden, artdiagnostischen Verfahren zu gelangen. Insbesondere war zu untersuchen, ob nicht bei sehr nahestehenden Bakterienarten Unterschiede in ihrem Verhalten gegenüber derselben Farbstoffserie festzustellen sind.

Meine in dieser Richtung angestellten Versuche, über die ich im folgenden berichten will, stellen noch keineswegs ein abgeschlossenes Ganzes dar. Ich halte mich aber nach den von mir bei einigen Bakterienarten erhaltenen Ergebnissen zu der Annahme berechtigt, daß der von mir eingeschlagene Weg zu dem erstrebenswerten Ziele führen wird und glaube deshalb die angewandte Methodik und die Resultate meiner Untersuchungen, die aus äußeren Gründen abgebrochen werden müssen, kurz mitteilen zu sollen.

Von den verschiedenen von mir benützten Beizen haben sich eine 1-proz. wässerige Kaliumbichromatlösung, die ich als Beize I bezeichne, und eine aus $1,0 \mathrm{~g}$ Kaliumbichromat und $0,4 \mathrm{~g}$ Brechweinstein auf 100 ccm und eine aus $1,0 \mathrm{~g}$ Kaliumbichromat und $0,4 \mathrm{~g}$ Brechweinstein auf 100 ccm
destillierten Wassers zusammengesetzte Beize IV besonders bewährt; die destillierten Wassers zusammengesetzte Beize IV besonders bewährt; die
Beize II enthielt $1,0 \mathrm{~g}$ Kaliumbichromat und $0,75 \mathrm{~g}$ Brechweinstein Beize II enthielt $1,0 \mathrm{~g}$ Kaliumbichromat und $0,75 \mathrm{~g}$ Brechweinstein auf
100 ccm destillierten Wassers. Bei der Herstellung der Beizen II und IV sind Kaliumbichromat und Brechweinstein getrennt in kaltem Wasser IV sion Kaliumbichromat und Brechweinstein getrennt ip kaltem Wasser zu miteinander vermischt werden. Beize III enthielt $1,0 \mathrm{~g}$ Kaliumbichromat, $1,5 \mathrm{ccm} 20$-proz. Milchsäure und 5 ccm 10 -proz. Schwefelsäure auf 200 ccm destilliertes Wasser. Zwecks Erzielung deutlicher Unterschiede ist eine

1) Höber, Physikalische Chemie der Zelle und der Gewebe, Leipzig 1914, S. 430.
2) A. E. Bautree, British Journ. of Photogr., 1915/16.
sorgfältige Entfernung der Beize durch gründliches Abspülen der Präparate unbedingtes Erfordernis.

Die Präparate wurden von Agarkulturen verschiedener Bakterienarten hergestellt; für vergleichende Untersuchungen wurden selbstverständlich stets gleichalte Kulturen benützt.

Wie sich im Laufe der Untersuchungen ergeben hat, waren Farbstoffverdünnungen, die eine Molekularkonzentration von ungefähr 1/350-1/450 normal 1) aufweisen, für meine Zwecke ann geeignetsten. Bei der Anwendung sehr starker Farbstoffverdünnungen (10^{-4} normal) trat infolge der dadurch notwendigen stundenlangen Erhitzung im Dampftopf bei 100° eine völlige Adsorption des Farbstoffes (Wasserblau, Methylviolett, Rose bengale), der sich gleichmäßig auf den ganzen Objektträger verteilte, während die Lösung Für die Versuche ben.

Für die Versuche benützte ich folgende Farbstoffverdünnungen: 1. Wasserblau 0,17 Proz., 2. Methylviolett 0,12 Proz., 3. Chrysoidin 0,07 Proz., 4. Rose bengale 0,32 Proz., 5. Aurantia 0,07 Proz., 6. Naphtholgrün 0,16 Proz., 7. Malachitgrün 0,09 Proz., 8. Brillantgrün 0,1 Proz.
9. Säurebraun 0,1 Proz. 10 Brill 9, 07 Proz., 12. Bismarckbraun 0, Brillantgelb 0,09 Proz., 11. Akridinorange 14. Lichtgrün 0,2 Proz., 15. Säurefuchsin 0,15 Proz 16. Orange G,15 Proz., 14. Lichtgrün 0,2 Proz., 15. Säurefuchsin 0,15 Proz., 16. Orange G 0,1 Proz. liche hier aufgeführten Farbstoffe von der Firma Grübler in Leipzig.

Die Bakterienpräparate wurden in der gewöhnlichen Weise durch Aus. streichen auf Objektträgern und Fixieren in ter Flam Weise durch Ausnach wurden sie in einein Glaßgefäß der Einwirkung der Beize unterworfen; das Abspülen mit destilliertem und Leitungswasser wurde in demselben Gefäß vorgenommen. Die derart hierauf in die mit den Farbstofflösungen gefüllten Glasgefäße übertragen.

Die Erwärmung der Präparate aff 37° wurde im Brutschrank vorgenommen; zweeks Erhitzung auf höhere Wärmegrade wurden die Objektträger in dem Gefäß, je nach der gewünschten Temperatur, in ein Wasserbad $\left(37-100^{\circ}\right)$, in den Dampftopf (100°) oder in den Autoklaven (120°) gebracht

Um das von mir gewählte Färbungsverfahren und die damit erhaltenen Ergebnisse näher zu demonstrieren, seien einige meiner zahlreichen Versuchsprotokolle hier wiedergegeben. Meine ersten Versuche (1-3) verfolgten lediglich den Zweck, festzustellen, ob im färberischen Verhalten verschiedener, gleichzeitig in denselben Lösungen behandelter Bakterien überhaupt ein deutlicher Unterschied wahrzunehmen war. Ich hatte deshalb von den verschiedenen Bakterienarten Ausstriche auf verschiedenen Objektträgern angefertigt. Bei den späteren Untersuchungen (4 und 5: Bact. coli und Paratyphus B) wurden jedoch die zu vergleichenden Bakterienarten auf ein und demselben Objektträger ausgestrichen.

Versuch 1. Heubacillen, Bact. coli, Paratyphus B.
A. Beize II $1 / 2$ Stunde bei 60°, dann in Wasser (zuerst Leitungswasser, dann destilliertes Wasser), 12 Stunden bei 37°; dann Wasserblau

1) Da die Farbstoffe nicht auf chemische Reinheit geprüft waren und da außerdem verschiedene Farbstoffe unbestimmbare Gemische von Körpern, die ein verschiedenes Molekulargewicht besitzen, darstellen, konnten die molekularen Konzentrationen nur annähernd berechnet werden.

3 Stunden bei 80°; Einbringen in destilliertes Wasser und Leitungswasser, 12 Stunden bei 37°; Chrysoidin $1 / 2$ Stunde bei 90°, dann Wasser (destilliertes) $1 / 2$ Stunde 18°. Mikroskopischer Befund: Heubacillen dunkelbraun bis braunschwarz (Form gut erhalten), Bact. coli hellgelb-orange (Konturen), Paratyphus B blaß, zum Teil hellgelb-grün. Nochmaliges Färben mit Chrysoidin + Zubeize ${ }^{1}$), dann destilliertes Wasser (dreimal gewechselt) bei 80°. Mikroskopischer Befund: Heubacillen dunkelbraun, Coli gelborange, Paratyphus B blaß, zum Teil deutlich grün.
Zubeize ${ }^{2}$) statt Chrysoidin; keine Nachfärbuan Wasserblau und Aurantia fund: Heubacillen, Coli, Paratyphus B Nachfärbung. Mikroskopischer Be-- Heubacillen, Coli

Bersuch 2. Heubacillen, Bact. coli, Paratyphus B destilliertes Wasser) 14 Stunden bei $37{ }^{0}$, Wasser (dreimal Leitungswasser, dann Stunde bei 100° 10 12 Stunden bei Zimmertemperatur; Wasserblau $2^{1 / 2}$ und destilliertem Wasser. Chrysoidin $11 / 2$ Stunde bei 100° und destilliertes Wasser bei 60°. Mikroskopischer Befund: Heubacillen scharf, grün; Coli farblos, bräunlich gefärbte Gruppen; Paratyphus B farblos, blaßgrün gefärbte Gruppen.

Versuch 3. Heubacillen, Coli, Paratyphus B, Schweinepest, Kartoffelbacillus, Bac. dysenteriae Shiga-Kruse, Vibrio cholerae.

Beize II $1 / 2$ Stunde bei 80°, dann 14 Stunden 37°. Dreimaliges Abspülen mit Leitungswasser und dreimal mit destilliertem Wasser. Säurebraun 2 Stunden bei 90°; Leitungswasser 60°, dann destilliertes Wasser
(dreimal gewechselt) in der Kälte. Wasserblau, 12 Stunden 37° 1/ Stunde $80-95^{\circ}$; Leitungswasser bei 60°. Masserblau, 12 Stunden $37^{\circ}, 1 / 2$ Stunde deutlich blau (grüne Körnchen); Coli farblos, bran Befund: Heubacillen Paratyphus B farblos, einzelne blaugefärbte Gruppen; Schweinepest farblos; Kartoffelbacillus blaugrün, sehr scharf; Dysenterie farblos, schmutzigolive Gartoffelbacillus blaugrün, sehr scharf; Dysenterie farblos, schmutzigolive bengale 28 Stunden bei 37°, $1 / 4$ Stunde bei 1000^{0}, dann Abwaschen mit kaltem destilliertem Wasser, dann in destilliertem Wasser 1 Stunde 100° Mikroskopischer Befund: Coli farblos bis hellorange: ParatyphusBdeutlich gelbbraun bis blaß gelbbraun; Schweinepest farblos, schwach rosá gefärbte Gruppen; Heubacillus und Kartoffelbacillus deutlich braun; Dysenterie orange, gelbgefärbte Gruppen; Cholera rosa bis rot.

Diese Versuche der ersten Reihe, von denen ich hier nur einige Protokolle kurz mitgeteilt habe, scheinen zunächst die Annahme zu bestätigen, daß verschiedene Bakterienarten im allgemeinen sich bei der Färbung unter Erhitzen vollständig verschieden verhalten. Des weiteren aber zeigen diese Untersuchungen, daß sich vielleicht selbst sehr nahestehende, morphologischnichtzunterscheidende Arten, wie z. B. Coli und Paratyphus B, durch

1) Zubeize: Tannin $2,0 \mathrm{~g}$, essigsaures Calcium $2,5 \mathrm{~g}$, destilliertes Wasser ad 150,0; 5 ccm Zubeize auf 100 ccm Farbstofflösung. In diesem Falle gab der Zusatz der Zubeize Niederschläge
2) 10 ccm Zubeize auf 100 ccm Farbstofflösung.
ein verschiedenes Verhalten gegenüber gewissen Farbstoffen differenzieren lassen (vgl. auch Versuch 4 und 5).

Versuch 4. Bact. coli, Paratyphus B.
Beize IV 20 Stunden bei 37°; Abspülen unter Leitungswasser, dann destilliertes Wasser (dreimal gewechselt); Wasserblau 2 Stunden 100°; Leitungswasser, destilliertes Wasser dreimal gewechselt. Dann Chrysoidin $11 / 2$ Stunde 100^{0}; destilliertes Wasser, Leitungswasser; Rose bengale Befund: Bact. coli rot, Paratyphus B blau.

Versuch 5. Coli, Paratyphus B.
Xylol 5 Minuten; Beize III 45 Minuten (in der Kälte); Leitungswasser (dreimal gewechselt) und destilliertes Wasser. Wasserblau 2 Stunden bei 100°; destilliertes Wasser, Leitungswasser ; Chrysoidin 1 Stunde 100°; destilliertes Wasser bei 60°; Methylviolett $1^{1 / 4}$ Stunde bei 60°; destilliertes Wasser, Leitungswasser bei 60°. Mikroskopischer Befund: Coli gelb, Paratyphus B blau.

Immerhin hat jedoch das Verfahren gewisse Nachteile. In den meisten Fällen hat nämlich die Form der Bakterien infolge der langen Hitzeeinwirkung erheblich gelitten, so daß nur noch gefärbte, krümelige, amorphe Massen zu sehen waren; in einigen wenigen Fällen waren allerdings die Bakterien als solche so gut wie gar nicht geschädigt. Ich versuchte, durch Abkürzung des Verfahrens diese Schädigung der Bakterien zu vermeiden und mit Hilfe einer der üblichen Nachfärbungen den durch mein Verfahren erzielten Farbenunterschied zwischen zwei verschiedenen Bakterienarten deutlicher hervortreten zu lassen (Versuch 6). Die Farbenunterschiede waren hier zwar nicht so deutlich ausgeprägt wie bei der früheren Methodik, immerhin waren sie aber doch derart, um schon mit dem bloßen Auge wahrgenommen zu werden; in morphologischer Hinsicht waren die Bakterien unverändert.

Versuch 6. Coli, Paratyphus B.
Beize IV 14 Stunden bei 37°; Leitungswasser und destilliertes Wasser 2 Stunden; Wasserblau 14 Stunden 37°; Chrysoidin 1 Stunde 100°, destilliertes Wasser bei 50°. Nachfärbung mit Karbolfuchsin (2--3 Sekunden lang) und Abspülen mit destilliertem Wasser. Mikroskopischer Befund: Coli gelblich-grün, Paratyphus B karminrot.

Zu erwähnen wäre noch, daß trotz der Anwendung der verschiedenen oben aufgeführten Farbstoffe in den verschiedensten Kombinationen bei differenten Gasbrandstämmen (Typus Rauschbrand und Typus WelchFraenkel) ein Farbenunterschied in keinem Falle festgestellt werden konnte.

Versuche, die die färberische Differenzierung von Blutpräparaten (dicke Tropfen und Ausstriche) verschiedener Tierarten in der angegebenen Weise (nach Extraktion des Hämoglobins) bezweckten, haben keine brauchbaren Ergebnisse geliefert. Wichtig ist nur, daß sich die hämoglobinfreien Blutkörperchen färberisch vom Plasma unterscheiden,
jedoch besteht z. B. zwischen Hammel- und Ziegenblutkörperchen oder zwischen Hammel- und Ziegenplasma keine Differenz in der Färbbarkeit. Die Blutkörperchen konnten die starke Erhitzung auf $120^{\circ} \mathrm{im}$ Autoklaven, wohl infolge der Beizung mit Kaliumbichromat, ziemlich gut ertragen. Die am Anfang ausgesprochene Vermutung von Brailsford Robertson, daß die spezifische Färbbarkeit auf einer Affinität des artspezifischen Eiweißes zu Farbstoffen beruht, scheint in Anbetracht dieses Mißerfolges noch nicht über jeden Zweifel erhaben.

Zum Schlusse erlaube ich mir, Herrn Geh. Medizinalrat Prof. Dr. W. Kolle für die große Liebenswürdigkeit, mit der er meine Arbeiten förderte, meinen ganz ergebensten Dank auch an dieser Stelle auszusprechen.

Herrn Dr. med. H. Schlossberger bitte ich, für seine wertvolle Hilfe meinen besten Dank annehmen zu wollen.

Paul Ehrlich.

Eine Darstellung seines wissenschaftlichen Wirkens. Festschrift zum 60. Geburtstage des Forschers (14. März 1914). Mit 1 Bildnis.
1914. (VIII, 668 S. gr. 8°.)

Preis: 16 Mark, geb. 17 Mark 20 Pf. (und 30% Zuschlag).
Inhalt:

W A. Biographische Einfïhrung (von Geh. Regierungsrat Dr. A. von nberg in Frankfurt a. M.).
B. Histologie undBiologie der Zellen und Gewebe. 1. Einleitender Ueberblick (von Geh. Obermedizinalrat Prof. Dr. W. W ald ey er in Berlin). 2. Das Sauerstoffbediurfis des Organismus (von Prof. Dr. L. M i cha elis in Berlin) 3. Farbenanalytische Studien (von Prof. Dr. L. Michaelis in Berlin). 4. Histo logie und Klinik des Blutes (von Prof. Dr. A. Lazarus in Charlottenburg)
5. Neurologie (von Prof. Dr. L. Edinger in Frankfurt a. M.). 6. Bakteriologie (von Prof. Dr. M. Neißer in Frankfurt a. M.). 7. Protozoenstudien (von Dr

Gonder in Frankfurt a. M.). 8. Botanik (von Dr. A. C. Hof in Frankfurt a. M.).
C. Immunitatsforschung. 1. Einleitender Ueberblick (von Wirkl. Geh.
bermedizinalrat Prof. Dr. G. Gaffky in Hannover). 2. Die Seitenkettentheorie (von Geh. Medizinalrat Prof. Dr. A. von W assermann in Berlin). 3. Methodik und quantitative Prinzipien bei der Behandlung der Immunitätsprobleme (von Prof. Dr. Th. Madsen in Kopenhagen). 4. Zur experimentellen Technik (von Dr. L. H. Marks in Frankfurt a. M.).
E. Freiherr von Dungern in Hamburg). Rezeptorenspezifitat (von Prof. Dr
6. Konstitution der Toxine (von Dr E. Freiherr von Dungern in Hamburg). 6. Konstitution der Toxine (von Dr.
H. Aronson in Berlin). 7. Hämotoxine bakteriellen Ursprungs (von Prof. Dr. H. Aronson in Berlin). 7. Hamotoxine bakteriellen Ursprungs (von Prof. Dr. furt a. M.). 9. Tierische Toxine (von Prof. Dr. H. Sachs in Frankfurt a. M.). 11. Cytophile Antikörper (von Prof. Dr. H. Sachs in Frankfurt Frankfurt a.M.) Serumpruifung und ihre theoretischen Grundlagen (von Stabsarzt Prof. Dr. K. E. Boehncke in Frankfurt a. M.). 13. Ueberempiindlichkeit - Anaphylaxie (von Prof. Dr. R. Otto in Berlin). 14. Fermente und Antifermente (von Prof. Dr U. Friedemann in Berlin).
Prof. Dr. C.Levaditi in Paris).
D. Geschwulstforschung. 1. Einleitender Ueberblick (von Wirkl Geheimen Rat Prof. Dr. V. Czerny, Exzellenz, in Heidelberg). 2. Ergebnisse der experimentellen Geschwulstforschung-mit Ausschuß der athreptischen Immunita (von Prof. Dr. H. A polant in Frankfurt a. M.). 3. Athreptische Immunitat Wie Bedeutung des Gedankens der Athrepsie fur die Pathologie und Biologie des
Wachstums, der Gwilste und der Infektionskrankheiten (von Prof. Dr.
G. Schöne in Greifswald)
E. Chemie und Biochemie. 1. Einleitender Ueberblick (von Prof. Dr R. Won Dr. B Ber in Berlin). 2. Chemie - mit Ausschlaß der Arsenverbindunge Prof. Dr. A. Bertheim in Frankfurt a. M.). 4. Konstitution, Distribution und Wirkung (von Prof. Dr. M. J a co b y in Berlin). 5. Physiologische und pathologisch Chemie (von Prof. Dr. G. Em bden in Frankfurt a. M) 6. Desinfektion (von Prof Dr. H. Bechhold in Frankfurt a. M.
F. Chemotherapie. 1. Einleitender Überblick - Salvarsan und Syphiis (von Geh. Medizinalrat Prof. Dr. A. Nei Ber in Breslau). 2. Chemo-
therapeutische Studien (von Prof. Dr. J. Morgenroth in Berlin). 3. Experi mentelle Grundlagen der Salvarsanwirkung (von Prof. Dr. S. Hata und Prof. Dr K. Shiga in Tokio). 4. Die klinische Erprobung des Salvarsans (von Dr J. Benario in Frankfurt a. M.).
G. Bibliographie. (Zusammengestellt von Prof. H. Sachs in Frankfurt a. M.) - Namenregister. - Kurze alphabetische Inhaltsübersicht.

Untersuchungen über die pathogenen Anaëroben, uiber die anatomischen und histologischen Veränderungen bei den durch sie bedingten Infektionserkrankungen des Menschen sowie der Tiere und über einige tudien aus dem patho gischtpathogene Anaérovenarten.

Von
Dr. Emanuel von Hibler,
a. o. Professor für pathologische Anatomie und I. Assistent am Institut. Mit 16 Crayon- und einer Farbendrucktafel. 1908.

Preis: 25 Mark

Inhalt: Einleitung. - I. Ueber das morphologische und biologische Verhalten der untersuchten pathogenen Mikroben innerhalb der erkrankten Gewebe, bzw. innerhalb der Körperfliussigkeit. - II. Ueber den methodischen Weg der Untersuchungen. wirkungen der untersuchten Anaëroben auf die zu ihaëroben. - IV. Von den EinWirkungen der untersuchten Anaëroben auf die zu ihrer Züchtung verwendeten
Närboden. - V. Ueber das Verhalten der untersuchten Anaëroben hinsichtlich Eigenbeweegung, Blähformen- und Granulosebildung. - VI. Ueber die Dauerformen der untersuchten Anaëroben; über die Entstehungsbedingungen der Sporen, über
ihre Lage und Gestalt, über ihre Widerstandsfanhigkeit
 bewahrungsbedingungen. - VII. Von den infektiösen Eigenschaften der untersuchten Anaëroben bzw. von der Empfänglichkeit verschiedener Tierspezies für Infektionen
mit denselben. - VIII. Von den anatomischen mit denselben. - VIII. Von den anatomischen Befunden und mikroskopischen Ge-
websveränderungen bei den durch die untersuchten pathogenen websveranderungen bei den durch die untersuchten pathogenen Anaëroben erzeugten
Infektionskrankheiten. - Verzeichnis der untersuchten Anaërobenarten und Stämme sowie der betreffenden Krankheitsfälle nebst Erläuterungen zu denselbend Stämme Zentralblattfür innere Medizin, Nr. 3, 1909:
dem $\dot{\text { Gebiete }}$. Ich halte die vorliegende Arbeit für eine der besten, die auf dem Gebiete der Differentialdiagnose pathogener Mikroorganismen ausgeführt worden als auch nach der bakteriologischen Seite hin, das günstigste Zeugnis aus und ist mit ihren erfolgreichen Resultaten ein entsprechender Beweis für die Ersprießlichkeit eines geschlossenen Zusammengehens der pathologischen Anatomie mit der Bak-
teriologie.

Das Virulenzproblem der pathogenen Bakterien. Epidemiologische und klinische Studien, von der Diphtherie aùsgehend Von
Edv. Laurent, Stockholm.
Mit 7 Kurven im Text und 7 Tafeln. 1910. (866 S. gr. 8°.)

$$
\text { Preis: } 30 \text { Mark. }
$$

2. Die Dialt: 1. Die Diphtherieepidemien in Danderyd-Djursholm 1898-1900. aus einer Virulenzsteigerung der avirulenten oder der sch wachvirulenten Diphtherie bazillenformen, die normal an den menschlichen Schleimhäuten vegetieren? - 4. Durch laufen die Diphtheriebazillen in etwa einer Woche eine typische Entwicklung, die durch Bildung von Sporen abgeschlossen wird ? - Die Diphtheriebazillengenerationen

- 5 . Der Virulenzwechsel der Diphtheriebazillengenerationen und der damit ver bundene Formenwechsel der Diphtherie. - Das Virulenzgesetz. - 6. Ist das Viru lenzgesetz der Diphtherie allen pathogenen Bakterien gemeinsam? - 7. Zusammen-
fassung der Resultate.

008870140140 LANGEN 2
machbinderei
mumuchbinderese - - rand de Tel.: 06462 / 5581

[^0]: 1) R. Kraus und St. Bächer, Deutsche med. Wochenschr., 1913, Nr. 23, S. 1081.
 2) Zeitschr. f. Immunitätsforsch., Bd. 15, 1912, S. 329.

 Arb. a. d. Inst. f. exp. Ther. u. d. Georg Speyer-Hause zu Frankfurt a. M. VIII.

[^1]: 1) Ehrlich \dagger und Karrer, Ber. d. Deutsch. Chem. Gess., Bd. 48, 1915 , S. 1634. Farbwerke vorm. Meister, Lucius \& Brüning. D.R.P. 270253 (1912).
 2) Experimentelle Studien zu Efrlichs Salvarsantherapie der Spirochätenkrankheiten und über neue Salvarsanpräparate. Deutsche med. Wochenschr., 1918, Nr. 43/44.
 3) Die vorhergehende Mitteilung siehe in Heft 7 der Arbeiten aus dem Institut für experimentelle Therapie, 1919.
[^2]: 1) Zincee und Hebebrand, Ann. d. Chem., Bd. 226, 1884, S. 61.
[^3]: 1) Ehrlich u. Bertheim, Berichte d. Deutsch. Chem. Ges., Bd. 45 , 12, S. 763.
 2) Alle Mikrobestimmungen wurden von Dr. H Weut in München ausgeführt.
[^4]: 1) S. die erste Mitteilung in Heft 7 dieser Zeitschrift.
[^5]: 1) Friedländer, Teerfarbenfabrikation, Bd. 10, S. 1244
[^6]: 1) P. Ehrlich und P. Karrer, Ber. d. Deutsch. Chem. Ges., Bd. 48 1915, S. 1634 , D.R.P. 270253.
 2) 1 .
 3) A. Binz, H. Bauer und A. Hallstein, Zur Kenntnis des Silbersalvarsannatriums (2. Mitteilung).
[^7]: 1) Rosenbloom and Gies, Proc. Amer. Soc. Biol. Chemistry, Vol. 48 , 1907, p. 1; Bratlsford Robertson, Journ. of Biol. Chem., Vol. 2, 1907, 1907, p. 1; Bratlsford Ro
 p. 307; Vol. 4, 1908, p. 13.
 2) Brailsford Robertson Univ falifarnia Publications in . ct. 1909
 3) A. Hollánde, Comptes rend. de l'acad. d. sciences, Juni 1916.
