
Fortify Audit Workbench

Developer Workbook
nextcloud-scan_audited

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

2

Table of Contents
Executive Summary
Project Description
Issue Breakdown by Fortify Categories
Results Outline

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

3

Executive Summary
This workbook is intended to provide all necessary details and information for a developer to understand and
remediate the different issues discovered during the nextcloud-scan_audited project audit. The information
contained in this workbook is targeted at project managers and developers.

This section provides an overview of the issues uncovered during analysis.

Project Name: nextcloud-scan_audited

Project Version:

SCA: Results Present

WebInspect: Results Not Present

WebInspect Agent: Results Not Present

Other: Results Not Present

Issues by Priority

Impact

0
High

0
Critical

1
Low

0
Medium

Likelihood

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

4

Project Description
This section provides an overview of the Fortify scan engines used for this project, as well as the project
meta-information.

SCA

Date of Last Analysis: May 16, 2022, 2:39 PM Engine Version: 21.2.3.0005

Host Name: sp-scan02 Certification: VALID

Number of Files: 58 Lines of Code: 3,906

Rulepack Name Rulepack Version
Fortify Secure Coding Rules, Community, Cloud 2022.1.0.0007
Fortify Secure Coding Rules, Community, PHP 2022.1.0.0007
Fortify Secure Coding Rules, Community, Universal 2022.1.0.0007
Fortify Secure Coding Rules, Core, JavaScript 2022.1.0.0007
Fortify Secure Coding Rules, Core, PHP 2022.1.0.0007
Fortify Secure Coding Rules, Core, Universal 2022.1.0.0007
Fortify Secure Coding Rules, Extended, Configuration 2022.1.0.0007
Fortify Secure Coding Rules, Extended, Content 2022.1.0.0007
Fortify Secure Coding Rules, Extended, JavaScript 2022.1.0.0007

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

5

Issue Breakdown by Fortify Categories
The following table depicts a summary of all issues grouped vertically by Fortify Category. For each category,
the total number of issues is shown by Fortify Priority Order, including information about the number of
audited issues.

Category Fortify Priority (audited/total) Total
IssuesCritical High Medium Low

Cross-Site Scripting: Self 0 0 0 1 / 1 1 / 1

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

6

Results Outline

Cross-Site Scripting: Self (1 issue)

Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.

Explanation
Cross-site scripting (XSS) vulnerabilities occur when: 1. Data enters a web application through an
untrusted source. In the case of self-XSS, data is read from a text box or other value that can be controlled
from the DOM and written back into the page using client-side code. 2. The data is included in dynamic
content that is sent to a web user without validation. In the case of self-XSS, malicious content is executed
as part of DOM (Document Object Model) modification. The malicious content in the case of self-XSS takes
the form of a JavaScript segment, or any other type of code that the browser executes. As self-XSS is
primarily an attack on oneself, it is often considered unimportant, but should be treated the same as a
standard XSS weakness if one of the following can occur: - A Cross-Site Request Forgery vulnerability is
identified on your website. - A social engineering attack can convince a user to attack their own account,
compromising their session. Example 1: Consider the HTML form:
<div id="myDiv">
 Employee ID: <input type="text" id="eid">

 ...
 <button>Show results</button>
</div>
<div id="resultsDiv">
 ...
</div>
The following jQuery code segment reads an employee ID from the text box, and displays it to the user.
$(document).ready(function(){
 $("#myDiv").on("click", "button", function(){
 var eid = $("#eid").val();
 $("resultsDiv").append(eid);
 ...
 });
});
These code examples operate correctly if the employee ID from the text input with ID eid contains only
standard alphanumeric text. If eid has a value that includes metacharacters or source code, then after the
user clicks the button, the code is added to the DOM for the browser to execute. If an attacker can
convince a user to input malicious input into the text input, then this is simply a DOM-based XSS.

Recommendation
The solution to XSS is to ensure that validation occurs in the correct places and checks are made for the
correct properties. Because XSS vulnerabilities occur when an application includes malicious data in its
output, one logical approach is to validate data immediately before it leaves the application (or just before
rendered, if DOM-based). However, because web applications often have complex and intricate code for
generating dynamic content, this method is prone to errors of omission (missing validation). An effective
way to mitigate this risk is to also perform input validation for XSS. Web applications must validate their
input to prevent other vulnerabilities, such as SQL injection, so augmenting an application's existing input
validation mechanism to include checks for XSS is generally relatively easy. Despite its value, input
validation for XSS does not take the place of rigorous output validation. An application might accept input
through a shared data store or other trusted source, and that data store might accept input from a source
that does not perform adequate input validation. Therefore, the application cannot implicitly rely on the
safety of this or any other data. This means that the best way to prevent XSS vulnerabilities is to validate

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

7

everything that enters the application and leaves the application destined for the user. The most secure
approach to validation for XSS is to create an allow list of safe characters that are permitted to appear in
HTTP content and accept input composed exclusively of characters in the approved set. For example, a
valid username might only include alphanumeric characters or a phone number might only include digits
0-9. However, this solution is often infeasible in web applications because many characters that have
special meaning to the browser must be considered valid input after they are encoded, such as a web
design bulletin board that must accept HTML fragments from its users. A more flexible, but less secure
approach is to implement a deny list, which selectively rejects or escapes potentially dangerous characters
before using the input. To form such a list, you first need to understand the set of characters that hold
special meaning for web browsers. Although the HTML standard defines which characters have special
meaning, many web browsers try to correct common mistakes in HTML and might treat other characters as
special in certain contexts. This is why we do not recommend the use of deny lists as a means to prevent
XSS. The CERT(R) Coordination Center at the Software Engineering Institute at Carnegie Mellon
University provides the following details about special characters in various contexts [1]: In the content of a
block-level element (in the middle of a paragraph of text): - "<" is special because it introduces a tag. - "&"
is special because it introduces a character entity. - ">" is special because some browsers treat it as
special, on the assumption that the author of the page intended to include an opening "<", but omitted it in
error. The following principles apply to attribute values: - In attribute values enclosed in double quotes, the
double quotes are special because they mark the end of the attribute value. - In attribute values enclosed in
single quote, the single quotes are special because they mark the end of the attribute value. - In attribute
values without any quotes, white-space characters, such as space and tab, are special. - "&" is special
when used with certain attributes, because it introduces a character entity. In URLs, for example, a search
engine might provide a link within the results page that the user can click to re-run the search. This can be
implemented by encoding the search query inside the URL, which introduces additional special characters:
- Space, tab, and new line are special because they mark the end of the URL. - "&" is special because it
either introduces a character entity or separates CGI parameters. - Non-ASCII characters (that is,
everything greater than 127 in the ISO-8859-1 encoding) are not allowed in URLs, so they are considered
to be special in this context. - The "%" symbol must be filtered from input anywhere parameters encoded
with HTTP escape sequences are decoded by server-side code. For example, "%" must be filtered if input
such as "%68%65%6C%6C%6F" becomes "hello" when it appears on the web page. Within the body of a :
- Semicolons, parentheses, curly braces, and new line characters must be filtered out in situations where
text could be inserted directly into a pre-existing script tag. Server-side scripts: - Server-side scripts that
convert any exclamation characters (!) in input to double-quote characters (") on output might require
additional filtering. Other possibilities: - If an attacker submits a request in UTF-7, the special character '<'
appears as '+ADw-' and might bypass filtering. If the output is included in a page that does not explicitly
specify an encoding format, then some browsers try to intelligently identify the encoding based on the
content (in this case, UTF-7). After you identify the correct points in an application to perform validation for
XSS attacks and what special characters the validation should consider, the next challenge is to identify
how your validation handles special characters. If special characters are not considered valid input to the
application, then you can reject any input that contains special characters as invalid. A second option is to
remove special characters with filtering. However, filtering has the side effect of changing any visual
representation of the filtered content and might be unacceptable in circumstances where the integrity of the
input must be preserved for display. If input containing special characters must be accepted and displayed
accurately, validation must encode any special characters to remove their significance. A complete list of
ISO 8859-1 encoded values for special characters is provided as part of the official HTML specification [2].
Many application servers attempt to limit an application's exposure to cross-site scripting vulnerabilities by
providing implementations for the functions responsible for setting certain specific HTTP response content
that perform validation for the characters essential to a cross-site scripting attack. Do not rely on the server
running your application to make it secure. For any developed application, there are no guarantees about
which application servers it will run on during its lifetime. As standards and known exploits evolve, there are
no guarantees that application servers will continue to stay in sync.

Issue Summary

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

8

Engine Breakdown

SCA WebInspect SecurityScope Total
Cross-Site Scripting: Self 1 0 0 1
Total 1 0 0 1

Cross-Site Scripting: Self Low
Package: src
src/eidlogin-adminsettings.js, line 221 (Cross-Site Scripting: Self) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Audit Details
Analysis Exploitable
Audit Comments

aelchlepp: Fri May 20 2022 11:17:48 GMT+0200 (CEST)
a user can attack himself during the wizard, no reason to use innerHTML here

Source Details

Source: Read value
From: lambda
File: src/eidlogin-adminsettings.js:221

218 // maybe we need to switch panel
219 if (switchPanel) {
220 // display the sp_entity_id
221 document.getElementById('eidlogin-settings-wizard-display-
sp_entity_id').innerHTML=document.getElementById('eidlogin-settings-form-
wizard-sp_entity_id').value;
222 // hide the skid button and it`s text, if we don't have skid as
configured idp
223 if (inputMetaIdp.value===skidMetadataUrl) {
224 skidCell1.classList.remove('hidden');

Sink Details

Sink: Assignment to innerHTML

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

9

Cross-Site Scripting: Self Low
Package: src
src/eidlogin-adminsettings.js, line 221 (Cross-Site Scripting: Self) Low

Enclosing Method: lambda()
File: src/eidlogin-adminsettings.js:221
Taint Flags: SELF_XSS, WEB

218 // maybe we need to switch panel
219 if (switchPanel) {
220 // display the sp_entity_id
221 document.getElementById('eidlogin-settings-wizard-display-
sp_entity_id').innerHTML=document.getElementById('eidlogin-settings-form-wizard-
sp_entity_id').value;

222 // hide the skid button and it`s text, if we don't have skid as configured idp
223 if (inputMetaIdp.value===skidMetadataUrl) {
224 skidCell1.classList.remove('hidden');

May 20, 2022, 11:22 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

10

	Title Page
	Table of Contents
	Executive Summary
	Executive Summary

	Project Description
	Issue Breakdown by Fortify Categories
	Results Outline
	Results Outline
	Cross-Site Scripting: Self
	Cross-Site Scripting: Self (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Cross-Site Scripting: Self - Low

